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Introduction

The purpose of this project is to exploit high density single nucleotide polymorphism (SNP)
assays to map genes for breast cancer in clusters of cases related through large extended
pedigrees. The central idea is to search for long runs of markers where cases share a common
allele. Unusually long runs indicate regions where the cases share a segment of chromosome
identical by descent from a common ancestor. If sharing of such a segment is sufficiently
rare by chance, the segment becomes a candidate as a region containing a gene for breast
cancer. The probability that a random segment reaches or exceeds the length of the longest
observed shared segment can be assessed by simulation. One of the major challenges in
this project is to properly account for (LD), that is, the fact that in high density marker
panels the alleles at nearby markers are correlated. Conventional methods generally assume
no correlation between markers, however, this will lead to improper assessment of the
statistical significance of the observed shared regions. As well as analyzing the high density
data collected under this project, we expect the methods and programs we develop to be
applicable in similar study designs for other diseases.
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Body

Aim 1: collection of data

Our first aim was to obtain genome wide SNP data for selected cases in three high risk
breast cancer pedigrees. This was done in the first year of the project and reported in our
previous annual report. Note that although we originally proposed an assay of 550,000
loci for each sample, by the time the data was collected the standard assay had more than
1,000,000 SNPs. This continues to be the current standard. We also obtained suitable
control data from the HapMap project.

Aim 2: statistical developments

The major statistical element in this project was to develop models to account for LD
between SNP markers in genome wide assays. As the density of the standard assay increased
this became both more timely and more challenging. However, we have made considerable
progress. The original approach to scaling up the number of loci that could be handled
was to restrict the graphical models used to model LD to those that have conditional
independence graphs that are interval graphs. This was described by Thomas (2009b), a
paper that was in press at the time of our previous report, but which has now appeared. The
implementing program accompanying this paper could, at that time, handle up to 20,000
loci simultaneously. We have since made changes to the method that makes a further
restriction limiting the maximum possible extent of LD around a locus. This emphasizes
the tendency of interval graphs to be linear, or long and thin, in structure and enabled us
to use a walking window approach in the model estimation phase. This greatly increased
the number of loci that can be handled: our current implementation has been used on
data sets with over 200,000 loci which is far more than the number of loci that are usually
assayed on chromosome 1, the longest chromosome. Since the chromosomes can be handled
independently, this achieves our goal of practical and efficient LD modeling on a genome
wide scale. The methodology behind this development is described in Thomas (2009c) and
an example of its use in the analysis of a high risk prostate cancer family is described in
Thomas (2009a).

One very useful application of our graphical models for LD is to realistically simulate
complete chromosome haplotypes and genotypes from the models. Such data can be used
to develop statistical methods, assess the significance of test statistics using empirical p-
values, and to compute statistical power. We have developed programs that take the
output from our model estimation programs and produce such simulations. These can
be used to simulate a population sample of unrelated individuals, and to simulate data
from relatives given an extended pedigree structure. Pedigree data is simulated using a
modified form of the gene-drop simulation method (MacCluer et al. 1986) which assigns
founder haplotypes from an LD model and then simulates their descent to other family
members. This methodology and an example are also described in Thomas (2009c) and
Thomas (2009a) respectively. This approach is used in the data analysis of our breast

5



cancer pedigrees as described below.
We have realized that in addition to searching for segments where relatives share genome

identical by descent heterozygously, it is also informative to look for regions of homozygous
sharing. This can be applied to both relatives from a known pedigree and to individuals
from a founder population. It can indicate regions where there may be either genomic
deletions or a region containing a recessive locus. This idea has previously been suggested
by Miyazawa et al. (2007) but their statistical assessment of any sharing was done using
asymptotic distribution theory whose assumptions may not be matched in a real data
analysis. We have now extended our LD modeling and gene drop simulation approach to
such homozygous sharing.

Finally, the application of graphical model estimation to LD has stimulated some the-
oretical work that is applicable to graphical model estimation in a general context. This
has been done in collaboration with Professor Peter Green at the University of Bristol.
Thomas & Green (2009b) gives a method for enumerating the number of equivalent junc-
tion tree representations that a graphical model can have, while Thomas & Green (2009a)
enumerates the decomposable graphs that can be obtained by either adding or deleting an
edge from a given decomposable graph. While these results may seem somewhat esoteric,
they have real applications to the problem of optimizing a decomposable graphical model
by using Markov chain Monte Carlo methods, an approach that is ubiquitous in this field.
We are currently working on an implementation of a new class of MCMC optimization
scheme that exploits these results.

Aim 3: software development

All of the methods described above have been implemented in Java programs that are
available from the PI’s web site (www-genepi.med.utah.edu/∼alun/software). These run on
Windows, Max, Unix and Linux environments. All the programs use the existing standard
LINKAGE program format for input and output of genetic data (linkage.rockefeller.edu),
which is familiar to most users. Included in the distribution are compiled classes, source
code, example data sets, and documentation comprising web pages generated using the
javadocs program. The programs are:

• SGS This is new name for the prototype program we called Shags in our previous
annual report. It finds genomic segments shared heterozygously in a set of individuals
who can be unrelated or related by a known extended pedigree. The program has
been run to analyze data for over 200,000 loci in a single run.

• SimSGS This is the new name for the prototype program we called SimShags in our
previous annual report. This simulates data to match that analyzed using SGS using
a multi locus gene drop approach, and hence obtains the distribution of maximum
genome sharing statistics under the null hypothesis of no genetic effect. It allows
simulation of founder haplotypes under either linkage equilibrium or LD. The program
has been run to simulate data for over 200,000 loci in a single run.
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• HGS This is used in a similar way to SGS but computes runs of homozygous, rather
than heterozygous, sharing.

• SimHGS This is used in a similar way to SimSGS but computes the null distribution of
statistics for runs of homozygous sharing.

• IntervalLD This is the new name for the prototype program we called IntervalHapGraph

in our previous annual report. This searches for an optimal graphical model for LD
structure given a sample of unrelated individuals from the sampled population. It
restricts the class of models to those with interval conditional independence graphs
and implements a walking window approach in the search. Its computational require-
ments, time and storage, have been shown to increase linearly with both the number
of loci considered and the number of individuals in the sample. The output from this
program provides the input LD model for SimSGS and SimHGS. This program has also
been run and tested on data sets with over 200,000 loci.

• GeneDrops This is a new program that simulates genotypes in a pedigree under
either linkage equilibrium or LD to match the data in a given input pedigree. It
will produce multiple simulations from a single call. The simulation method used
is the same as that used by SimSGS and SimHGS; however, in this case the complete
simulated pedigrees are output, not just summary statistics, thus, it can be employed
to evaluate arbitrary statistical analyses.

Aim 4: data analysis and publication

The analysis of our three breast cancer susceptibility families is proceeding. The introduc-
tion of the 1,000,000 SNP Illumina assay took slightly longer to acquire than we anticipated
and the larger data set required some modifications in our developments in order to handle
this scale up. Hence, the analysis is not yet complete and in view of this we were allowed
a no cost extension to conclude it and prepare results for publication.

To date we have completed an analysis of the control data obtained from the HapMap
project and prepared a manuscript for publication (Cai et al. 2009) describing, and ex-
plaining, some anomalous features that could have let to false positive results if left unin-
vestigated. This manuscript is in preparation.

We have obtained a profile of long shared genomic segments throughout the genome
for the affected individuals in each of our three sampled pedigrees using SGS. We have also
estimated graphical models for LD from the control data using IntervalLD and obtained
simulations of genomic sharing under the null hypothesis of no genetic effect for all our
pedigrees using SimSGS. At present we are tuning the parameters of the programs in order
to get the most reliable estimates and realistic simulations. We expect this work to be
completed and submitted for publication before the end of the no cost year.
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Key research accomplishments

• Development of methods that can estimate graphical models for LD on a genome
wide scale for high density SNP assays.

• Development of simulation methods for high density SNP assay data under LD in
pedigrees or unrelated individuals.

• Release of software, including source code and documentation, implementing the
above methods.

• Analysis of control data from the HapMap project indicating problem areas of the
genome which will allow us to avoid false positive results.

• Initial analysis of 1,000,000 SNP markers on 25 breast cancer cases in three high risk
pedigrees.
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Reportable outcomes

• Thomas (2009b) published.

• Thomas (2009c) published.

• Thomas (2009a) published.

• Thomas & Green (2009a) published.

• Thomas & Green (2009b) in press.

• Cai et al. (2009) submitted for publication.

• Poster presentation based on Cai et al. (2009) made at International Genetic Epi-
demiology Society meeting, St Louis, September 2008.

• Seminar based on Thomas (2009c) and Thomas (2009a) presented at Deutsches Kreb-
sforschungszentrum, Heidelberg, Germany. May 2009.

• Seminar based on Thomas (2009c) and Thomas (2009a) presented at the Faculty of
Agricultural Sciences, Aarhus University, Foulum, Denmark. May 2009.
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Conclusion

Aim 1, collection of data; aim 2, statistical developments; and aim 3, software development,
are now complete. Papers describing the methods have been published and programs im-
plementing them have been developed, tested, and released. We have also made significant
progress under aim 4, data analysis and publication. Analysis of control data has been com-
pleted and submitted for publication. Analysis of case data is well underway and should
be submitted for publication before the end of the project.
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ABSTRACT
Motivation: Efficient models for genetic linkage disequilibrium are
needed to enable appropriate statistical analysis of the dense,
genome wide single nucleotide polymorphism assays currently
available.
Results: Estimation of graphical models for linkage disequilibrium
within a restricted class of decomposable models is shown to be
possible using computer time and storage that scale linearly with the
number of loci. Programs for estimation and for simulating from these
models on a whole genome basis are described and provided.
Availability: Java classes and source code for IntervalLD and
GeneDrops are freely available over the internet at
http://bioinformatics.med.utah.edu/∼alun.
Contact: alun@genepi.med.utah.edu

1 INTRODUCTION
Linkage disequilibrium, orLD, is the non-independence of alleles
at proximal genetic when the recombination process along chromo-
somes has not had enough time to randomize their states. It is a
form of allelic association other forms of which can also arise due
to selection, relatedness of individuals, and population admixture.
Statistical methods that do not take LD into account can be mis-
led into false results. In sparse sets of genetic loci, its effects can
be negligible, however, with the dense genetic assays using single
nucleotide polymorphisms, orSNPs, currently available, it is critical
to properly account for it. Several approaches have been employed
for modelling LD, in particular graphical modelling has been used
extensively in this context. Verzilliet al., 2006 estimated graphical
models for correlated genotypes at proximal loci, while Scheet and
Stephens, 2006 defined graphical models on variables indicating
the cluster of origin of alleles and genotypes. Thomas and Camp,
2004 , Thomas, 2005 , Thomas, 2007 , and Thomas, 2009 develo-
ped methods for estimating graphical models in which the variables
are the alleles themselves, and it is this development that we conti-
nue here. The estimation approach presented here is similar to that
of Greenspan and Geiger, 2004 . Their use of the EM algorithm in
addressing the missing data problem of unknown phase is similar
to the two phase approach described below which may be thought

of as a stochastic version of EM where the E-step uses a random
imputation instead of a conditional mean. The classes of graphical
models used are, however, quite different. Where Greenspan and
Geiger, 2004 use a Bayesian network to explicitly model the haplo-
type block structure of the genome, this work models the data in a
purely empirical manner using the physical relationships between
the loci only to restrict the class of decomposable graphical models
that can be considered.

A graphical model for a set of random variables is based on a
factorization of their joint distribution as

P (X1, . . . , Xn) =
Y

i

fi(Ti)

whereTi ⊂ {X1, . . . , Xn}, and eachfi is some non-negative func-
tion of a subsetTi of the variables. From this we define a graph in
which each variable is a vertex, and pairs of vertices are connected
by edges if they are both contained in the sameTi. This is called
the conditional independence graph or Markov graph as it allows
the conditional independence relationships between the variables
defined by the factorization to be easily read off.

Højsgaard and Thiesson, 1995 originally developed methods for
estimating graphical models for discrete random variables by maxi-
mizing a penalized likelihood function. The penalty, based on the
number of parameters, is necessary to avoid fully saturated models.
Giudici and Green, 1999 developed estimation of graphical models
on Gaussian variables as did Dobraet al., 2003 and Joneset al.,
2005 . Thomas and Camp, 2004 adapted the method of Højsgaard
and Thiesson, 1995 for estimating graphical models for LD from
phase known haplotype data, replacing the original deterministic
model search with the random methods of Metropolis sampling
Metropoliset al. (1953) and simulated annealing Kirkpatricket al.
(1982). Thomas, 2005 extended this approach to use unphased
genotype data using a two stage method. Given an initial model,
usually the trivial one that represents linkage equilibrium, and the
observed genotypes, complete phase known haplotypes are imputed
for the sampled individuals. Then, given these imputed haplotypes,
the graphical model is re-estimated. Given a new graphical model,
the haplotypes are re-imputed, and so on.

The above methods restrict the search for graphical models to
those whose conditional independence graphs aredecomposable or,

c© Oxford University Press 2008. 1



Thomas

equivalently, chordal or triangulated Golumbic (1980). It is this
property that allows the likelihood and degrees of freedom of a
graphical model to be computed. Decomposable graphs, however,
are not easily characterized. The random search methods descri-
bed above typically propose changes to an incumbent graph such
as adding or deleting an edge. Before evaluating the penalized like-
lihood for the proposed graph, it is necessary to first check that it
is decomposable. While Giudici and Green, 1999 give efficient
methods for this, in large graphs the probability that a random pro-
posal will be decomposable decreases rapidly, ultimately making the
search procedure very inefficient. Thomas, 2009 circumvented this
problem by restricting the search to the easily characterized subclass
of models whose conditional independence graphs areinterval gra-
phs, as defined below. This restriction was shown to greatly improve
the search efficiency, without sacrificing power to appropriately
model LD.

In this work we add one further model restriction that enables a
walking window approach to estimation of LD between the alle-
les along a chromosome. This is implemented in a program whose
storage and time requirements are linear in the number of loci
considered as we illustrate on examples of over 200000 markers
taken from the HapMap YRI data set The International HapMap
Consortium (2005).

While Thomas, 2007 showed that graphical models for LD
could, in principle, be used for linkage analysis, full multi point
linkage analysis is not feasible with dense SNP data. However, it
is feasible to use haplotypes generated using LD models in simula-
tion methods to assess significance in association studies involving
unrelated cases and controls. It is also feasible to generate haplo-
types for pedigree founders using the models and then simulate the
descent of the alleles to descendants using the multi locus gene drop
method. These simulations can be used for assessing the statisti-
cal significance of long runs of allele sharing that are used in the
method of mapping by shared genomic segments introduced by of
Thomaset al., 2008 and Leibonet al., 2008 . With this in mind, we
have written a program to perform gene drop simulation with linked
markers in LD.

In what follows we briefly review estimating graphical models
from genotype data and describe the role of interval graph in this
context. We then describe the implementation of this approach in
a walking window along the chromosome. We also describe briefly
how the programs implementing these methods can be used. Finally,
we illustrate the linearly scaling performance of the program with
data from HapMap.

2 METHODS

2.1 Estimating graphical models
A graphical model is decomposable if and only if the maximal cliques,
C1, . . . Cc, of its conditional independence graph can be ordered so that
the following running intersection property holds:

Si = Ci ∩

c
[

j=i+1

Cj ⊂ Ck for some k > i.

The setsSi are called theseparators of the graph, by conventionSc = ∅.
The joint probability distribution can then be expressed as a function of the

clique and separator marginals:

P (X1, . . . , Xn) =
Y

i

P (Ci)

P (Si)
.

This then allows the calculation of the maximized log likelihood and degrees
of freedom for the graphical model as

log(L̂(G)) =
X

i

log(L̂(Ci)) −
X

i

log(L̂(Si))

and
df(G) =

X

i

df(Ci) −
X

i

df(Si)

respectively, from which we can obtain the penalized likelihood orinforma-
tion criterion

IC(G) = log(L̂(G)) − α df(G). (1)

In the case of discrete data with no missing values, the clique and separator
marginals are simply contingency tables for which the degrees of freedom
and maximized likelihood are easily calculated.

As noted above, we can optimizeIC(G) using random search methods
in which we make small changes toG to obtain G′ which then must
be checked for decomposability and subject to the usual Metropolis or
simulated annealing rejection step.

In order to estimate graphical models from genotype data, we must first
impute complete phase know data under an initial model. For this we assume
linkage equilibrium which is equivalent to a graphG with no edges. The
above random search method is then run for some number of iterations and
the resulting graphical model and maximum likelihood parameter estima-
tes are used to obtain new imputations for the complete phase known data.
Details of this process are given by Thomas, 2005 .

2.2 Interval graphs
Under a perturbation scheme that simply adds or deletes edges from the
incumbent graph, as the number of vertices increases the probability that
a random proposalG′ is decomposable decreases. Thomas, 2009 shows
that for the LD problem, the probability decreases approximately as1/n but
that this can be avoided by restricting the conditional independence graphs
to beinterval graphs. A graph is an interval graph if and only if the vertices
can be made to correspond to intervals of the real line such that two vertices
are connected if and only if their corresponding intervals overlap. This has
some intuitive appeal for the LD problem because loci are ordered linearly
along a chromosome, and we expect that LD will decay with distance. In
order to reflect this, we assign each locus a point on the line and require its
corresponding interval cover its location. In this application the points are
evenly spaced in chromosomal order, but could be made to reflect the phy-
sical distances between loci. Thomas, 2009 also required that in order for
two vertices to be connected, their intervals must overlap by a minimum,
non-zero amount. This allows some flexibility for loci positioned between
two correlated loci, but which appears to be stochastically independent, to
be assigned a small interval and hence avoid a forced connection with one of
the flanking loci.

Interval graphs are a sub class of decomposable graphs Golumbic (1980),
and it is easily shown that the additional restriction described above still
define interval graphs. Moreover, the characterization of the graph struc-
ture in terms of intervals of the line make it simple to propose new graphs
in the same class without having to check for decomposability. For exam-
ple, if we propose changing the length of an interval the resulting perturbed
graph is obviously still an interval graph, and hence decomposable. Thomas,
2009 showed that this leads to considerable computational efficiencies, and
that the haplotype frequencies from models with interval graphs do not dif-
fer greatly from those under general decomposable models, nor from those
implied by the models of Scheet and Stephens, 2006 .

In order to store and manipulate the intervals, Thomas, 2009 used a stan-
dard structure called aninterval tree de Berget al. (2000). This structure
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Efficient graphical models for LD

Interval representation

Corresponding graph

overlap
required 
Minimum 

Fig. 1. The relationship between the interval representation of an interval
graph and the graph itself. A box represents the interval assigned to a locus
which is constrained to include the locus’s assigned position, shown as a line
crossing the box. The whiskers represent the maximum extent allowed for
the interval. Boxes that overlap by at least the minimum requirement lead to
connections between the vertices in the corresponding graph, shown below.
Note that the interval corresponding to locus 3 is shorter than the minimum
required overlap, shown on the left hand side, and hence the vertex in the
corresponding graph has no connections. Similarly, the overlap between the
intervals for loci 9 and 10 is insufficient to create a link. Note also that the
graph shown here and the one in figure 2 are both decomposable which is a
consequence of their derivation from the interval representation.

allows addition and deletion of intervals and queries as to which intervals
overlap with a given one to be carried out in, at best,O(log(n)) time.
Together with the the required storage manipulations this resulted in super
linear time requirements for large data sets of 10,000 loci or more. To over-
come this, we now introduce a final model restriction: we require that the
interval representing a locus extends no more that some maximum valueµ
to each side of its associated point. This allows the intervals to be stored
in a simple array ordered by the position of the required point. To identify
the intersectors of an interval we now need only find its index in the array
and check each interval whose required point is within2µ units each side.
Such a query can be done in time independent of the size of the array. The
structure of these graphs is illustrated in figure 1. While this makes graph
updates very efficient, imputing the phase known haplotypes for all loci is
still a computationally demanding step. For this reason we have adopted the
following walking window approach.

2.3 Graph updates in a window
The first stage of the search method involves searching the space of interval
graphs given fixed, imputed haplotypes. In doing this we restrict the vertices
being considered to those within a contiguous window of the line. We pro-
pose an update to the incumbent graph,G say, by choosing a vertex in the
window and perturbing its corresponding interval by generating new random
end points each side of the fixed point. The new distances to the end points
are generated independently from the Uniform(0, µ) distribution. The pro-
posed graph,G′, is then either accepted as the next incumbent, or rejected,
based on the value of the information criterion. Thomas, 2009 showed that
both the likelihood and the degrees of freedom ofG′ can be evaluated by
considering the values forG and the small subgraph within the maximum
extent of the interval being updated. This is independent of the number of
loci and hence very fast.

Window of variables corresponding to changed intervals

Maximum extent of graph affected

Fig. 2. The vertices possibly affected by updates to the graph in a fixed
window. The intervals for the vertices in the window, the black circles in
the solid box, can be changed by generating new end points. Edges between
these and the grey vertices in the dotted box may change as a result, and
these need to be considered in the new calculation of maximized likelihood
and degrees of freedom. No part of the graph outside the dotted box can
change until the window moves.

Although we limit the intervals updated to a fixed window, the effects
can extend to either side of the window. This is illustrated in figure 2. In the
example shown, a window of 5 variables is being updated, however, as figure
1 shows, the maximum length of an interval is 3.4 units, where a unit is the
distance between two consecutive markers. Hence, a vertex may be connec-
ted to the any of the three previous or next vertices. The effects of changes
to the window of 5 vertices may, therefore, extend to an enclosing window
of 11. However, outside of this, no edges can change. In the implementation
described below, the walking window covers 100 vertices at a time and an
interval can extend be up to 8 units long.

2.4 Phase imputations in a window
The second stage of the search is to update the imputed haplotypes given
the current model and the observed genotypes. Again we do this in a restric-
ted contiguous window of loci. The current graphical model is applied to
both the paternal and maternal haplotypes for each observed individual. The
values at each locus determine the observed genotypes. Thus, we obtain a
compound graphical model connecting haplotypes to genotypes as shown in
figure 3. A random imputation for the haplotypes can now be made using
the usual forward-backward graphical modelling methods as described by
Thomas, 2009 . This requires determining from the graph an ordering of the
variables to be updated. The forward step then proceeds through this list cal-
culating the conditional distribution of the state of each given the states of
those that appear later in the list. The conditional independences implied by
the graph mean that this conditional distribution typically depends on only a
small subset of the remaining variables so that this is usually a quick compu-
tation. The backward step then moves through the same list in reverse order
using the conditional distributions previously calculated to simulate a state
for each variable given the states of those already determined.

Note that in making these updates, we change only values in the cur-
rent window, however, these may depend on the values of alleles at loci
neighbouring the window, as shown in figure 3.

While the graphical models for the haplotypes, figure 2, are guaranteed by
the interval graph representation to be decomposable, the compound graphi-
cal models, figure 3, are typically not. Consequently, to find the ordering of
the vertices needed to make the forward-backward steps described above, we
first need to find a triangulation of the graph within the window, and hence
find a decomposition. This step is super linear in the time required, and this is
why we implement the walking window approach. Initial testing showed that
the computational time required to make this update grows approximately as
w log(w) wherew is the length of the window.
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Variables being updated

Variables that may need to be conditioned on

Fig. 3. The graphical model shown in figure 2 is applied to the paternal and
maternal haplotypes of each individual in the sample in parallel. These affect
the observed genotypes shown as white squares. The states of the black verti-
ces are updated conditional on the genotypes and the current graphical mode.
This may require conditioning on states of vertices outside the window, as
shown in grey.

3 IMPLEMENTATION

3.1 Model estimation
The above methods have been implemented in a program called
IntervalLD that is available as part of the author’s packages of Java
programs for graphical modelling and genetic analysis. The program takes
input in the same standard file formats as the much usedLINKAGE programs
(http://linkage.rockefeller.edu). Two files are input: one spe-
cifying the nature of the genetic loci being analyzed, the second giving a list
of individuals and their genotypes. The format allows for specifying pedigree
relationships between the individuals, but also, by listing the parents as zero,
allows for samples of unrelated individuals as required by these methods.
IntervalLDwill treat all individuals as unrelated even if relationships are
specified.

The program is run using the following call

java IntervalLD in.par in.ped [w] [p] [g]

where

• in.par andin.ped are the LINKAGE format input files described
above,

• w is the width of the window of loci to be considered. The default is
100.

• p is the number of phase updates to make in each window. The default
is 5.

• g is the number of sweeps of graph updates to try between each phase
update. The default is again 5.

In the above and what follows, arguments in square brackets – [] – are
optional.

Having read in the data and set up the appropriate data structures, the
program makes an initial imputation of phase based on the assumption of
linkage equilibrium.

Then, one round of random sampling is made as follows. In each window,
g sweeps are made of the loci in order, randomly perturbing the correspon-
ding interval by proposing new end points, calculating the likelihood and
degrees of freedom of the new graph, and either accepting or rejecting the

change based on Metropolis acceptance probabilities. Afterg sweeps are
made, a new phase imputation is made in the window. This new imputa-
tion is randomly chosen given the updated graphical model and the observed
genotypes. This is repeatedp times, withg Metropolis sweeps between each
imputation. The window is then advanced along the chromosome by one half
window length and the above process is repeated until the end is reached.

Following the round of random sampling a round of random uphill opti-
mization is made. This follows the same format as the random sampling, but
the Metropolis sampling of the graph is replaced by an uphill search: the
proposed graph is accepted only if it is as good as or better than the current.
Also, instead of making random phase imputations, imputations are made
by choosing the most probable haplotypes. As with the random version, this
is done using standard graphical modelling forward-backward methods.

The multinomial parameters of the resulting graphical model are then out-
put to a file. The file format is straightforward and human readable, although
it is intended primarily for input into other programs. It is a list of the condi-
tional distributions of the state of the alleles at each locus given the values at
the loci that the graphical model defines as relevant.

3.2 Gene drop simulation under LD
Gene drop is a method for simulating the genotypes of related individuals in
a pedigree. Alleles are allocated to founders at random, and these are then
dropped down the pedigree mimicking Mendelian inheritance until the geno-
types of all individuals are allocated. The single locus version is described
by MacClueret al., 1986 . The multi locus version is similar, the diffe-
rence being that the probabilities of inheritances at successive loci depend
on the recombination fraction between them. An implementation of multi
locus gene drop is given in theMERLIN program Abecasiset al. (2001).
The implementation given here differs only in that the founder alleles are
allocated by simulating haplotypes from a graphical model as estimated from
control data usingIntervalLD. The program is called as follows:

java GeneDrops in.par in.ped n pfx [ldmod] [-a]

where

• in.par andin.ped are again LINKAGE format input files. In this
case the pedigree structure specified inin.ped is used for simulations.

• n is the number of simulations to perform.

• pfx is a prefix used in naming the output files. For example ifn is
10 andpfx is gdout then the output files will be namedgdout.01,
gdout.02, ... gdout.10. Each of these files will be a LINKAGE
pedigree files differing fromin.ped only in that the genotypes given
by them are simulations rather than the actual observations.

• ldmod is the name of the file containing the graphical model for LD.
Note that this can be omitted in which case standard gene drop simula-
tions are made under the assumption of linkage equilibrium using the
alleles frequencies given inin.par.

• -a is an optional argument that determines what to output. By default
genotypes are only output to match those observed, as specified in the
in.ped file: that is, if a genotype is unspecified in the input file it will
be unspecified in the output file also. If the-a option is given, however,
complete genotypes are output for all individuals.

4 RESULTS
To illustrate the linear scaling ofIntervalLD andGeneDrops we ran
both programs on SNP data for chromosome 1 downloaded from HapMap.
We used the YRI data which are the genotypes of 30 parent-offspring trios
of Yoruba people from Ibadan, Nigeria. For model estimation we used only
data on the 60 unrelated parents. This first required rewriting the downloa-
ded files to make LINKAGE format input files. We then selected subsets of
different numbers of loci, the smallest being 100 the largest being all 223110
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Efficient graphical models for LD
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Fig. 4. The computational resources needed for LD model estimation and
gene drop simulation plotted against the number of loci. The times needed
for estimation are shown as white circles, the storage requirements are shown
as white squares. The times needed for simulation are shown as black circles.
The best linear fits are also plotted. The units for the vertical axis are seconds
for the time data and Mbytes for the storage data.

loci available for chromosome 1. All the results described here were obtai-
ned using the author’s lap top computer running Java 1.5.002 under Linux.
The machine has two 2.8 GHz processors and 4 Gbytes of random access
memory.

Figure 4 shows the times taken in seconds and the storage required in
Mbytes for model estimation usingIntervalLD with the default parame-
ters described above. Also given are the times needed to make 100 gene drop
simulations for a small three generation pedigree. The pedigree consisted of
a sibship of 10 children, their parents and grandparents. The linear scaling
for all these measures is clear.

Figure 4 shows how the resources required for LD model estimation
change with the size of the sample. These results were obtained from artifi-
cial data sets obtained by duplicating and reduplicating the 60 individuals of
the YRI data described above. In each case 10000 loci were modelled. This
again shows clear linear scaling.

Thomas, 2009 showed that the haplotype frequencies implied by gra-
phical models for LD were similar to those modelled by thefastPHASE
program of Scheet and Stephens, 2006 . To further investigate this we
tested the program’s ability to impute missing genotypes from the haplo-
type model. For each of the first 600 loci, we deleted the genotype of one
individual, so that 10 genotypes per individual were deleted in all. We then
ran IntervalLD on this data and output the final genotypes imputed by
the program for the missing values. The imputed values matched the actual
values in 88.5% of cases. As a comparison, we also appliedfastPHASE to
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Fig. 5. The computational resources needed for LD model estimation for
10000 loci plotted against the number of individuals in the sample. As in
figure 4, time is shown as white circles and storage as white squares. The
best linear fits are again shown.

the problem using its default parameter settings. This was correct 93.5% of
the time.

5 DISCUSSION
Current human SNP genotyping assays obtain genotypes on around
one million loci for the individuals assayed. As the chromosomes
segregate independently, modelling of LD and simulation can be
performed separately for each chromosome. The largest number
of loci that need to be considered jointly, therefore, are those on
chromosome one, the largest chromosome. This number is under
100000 and well within the range considered here. The methods
and programs described can therefore be applied to estimation and
simulation problems on a genome wide scale. Model estimation of
the data set of 223110 loci took just over 11 hours, from which
we estimate that an analysis for a million loci would take around 50
hours. The limiting factor here is the storage space needed. Just over
1.8 Gbytes were required for the complete set of 223110 loci.

While the recent increases in the number of loci assayed is drama-
tic, the computational resources also, clearly, depend on the sample
size. More generally we would expect the requirements to scale as
O(nmk) where

• n is the number of loci,

• m is the number of individuals assayed
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• k is the average complexity of the graphical models considered.

The complexity of a graphical model on binary variables can be
measured by

P

i
2ci whereci is the number of variables in theith

clique, and the sum is over all cliques. To isolate the effects of incre-
asing sample size and obtain figure 5, theα parameter of equation
(1) was manipulated so that the model complexities remained simi-
lar. In reality, as the sample size increases weaker interactions may
become detectable and the complexity of the graphical models may
increase. Hence, in some circumstances super linear scaling may
occur as the sample size grows. While this can be fixed by increasing
α and enforcing parsimony, care should be taken not to oversimplify
the models found. For larger samples, therefore, it might be neces-
sary to break up the data further, perhaps handling the arms of the
larger chromosomes separately.

Some experimentation with the parameters as used in the above
comparison with thefastPHASE program, showed that results
were not particularly sensitive to the choice of the the value for the
maximum extent of the intervals. A maximum interval of 5 units
each side of the locus allows the alleles at the locus to depend on up
to 10 loci on each side. However, dependence on more than 5 was
rarely seen. On the other hand the choice ofα in equation (1) had a
greater effect. The original setting was1

2
log(h) whereh is the num-

ber of chromosomes in the sample which is in accordance with the
Bayesian information criterion of Schwarz, 1978 . However, better
performance was seen with a far lower value that allowed for larger
clique sizes. The default value is now set atα = 1

16
log(h). We note

that while the performance ofIntervalLD on the imputation test
gave good results, correctly imputing 88.5% of missing genotypes,
this was not quite as good asfastPHASE which correctly imputed
93.5%.

Gene drop simulation has many possible applications, however,
this work was primarily motivated by its use in assessing the stati-
stical significance of allele sharing in relatives in identity by descent
gene mapping strategies. Such methods have been described by
Thomaset al., 2008 and Leibonet al., 2008 . These authors reco-
gnize that LD is likely to increase the lengths of random runs, or
streaks, of allele sharing, potentially leading to false positive results.
The methods and programs described here can be directly applied to
this problem.
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Abstract

We describe methods and programs for simulating the genotypes of individuals in a pedigree
at large numbers of linked loci when the alleles of the founders are under linkage disequilib-
rium. Both simulation and estimation of linkage disequilibrium models are shown shown to
be feasible on a genome wide scale. The methods are applied to evaluating the statistical
significance of streaks of loci at which sets of related individuals share a common allele. The
effects of properly allowing for linkage disequilibrium are shown to be important as they
explain many of the large observations. This is illustrated by re analysis of a previously
reported linkage of prostate cancer to chromosome 1p23.
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1 Introduction

Dense single nucleotide polymorphism, or SNP, genotype assays offer both great opportu-
nities and challenges to statistical genetics. The quantity, quality, and cheapness of the
assays can allow powerful methods for precise gene localizations. However, the quantity of
the data makes more involved forms of analysis intractable on a genome wide scale and the
density of the loci assayed requires detailed modelling of the structure of the chromosomes.
In particular, linkage disequilibrium, or LD, could for the most part be safely neglected
when using micro satellite genotypes, whereas it it critical to model it accurately with dense
SNP assays.

Although these challenges are encountered with population samples, they are even more
problematic with pedigree data. Linkage analysis is a powerful statistical method that has
been used very successfully to map disease genes, but it is computationally intense and
intractable to carry out on one million marker genotype data. Moreover, adapting it to
model LD greatly increases the computational requirements (Thomas 2007). This has led
to in interest in simpler, more tractable analyses for family data that rely on the quantity
of the data rather on statistical efficiency for their power. Thomas et al. (2008) introduced
a mapping strategy based on counting long runs of loci at which individuals share alleles
identical by state (IBS). Leibon et al. (2008) also considered the same statistic which they
called the SNP streak statistic. Long runs of shared alleles should be rare in unrelated
individuals, whereas in relatives within a pedigree, or in samples from founder populations,
these long streaks indicate underlying sharing of genomic segments identical by descent
(IBD) from a common ancestor. If the individuals sharing are selected to have some trait,
and they are sufficiently distantly related that probability of random sharing is very low,
then there is strong evidence that the shared segment contains a gene affecting the trait.

Houwen et al. (1994) and Heath et al. (2001) both studied relatively isolated founder
populations to identify a small number of related cases who shared common chromosomal
segments which they used to map disease genes. However, neither of these approaches
incorporated precise pedigree relationships between the cases. Chapman & Thompson
(2002) and te Meerman & Van der Meulen (1997) examined shared chromosomal segments
in a founder population and showed how these are affected by the time since the founding
of the population, population growth, genetic drift, selection and population subdivision.
The streak statistic is similar to the haplotype sharing statistics of Van der Meulen &
te Meerman (1997) and Beckmann et al. (2005), however, these more complicated statis-
tics require genotyping of close relatives to estimate phase, are based on combining pairwise
comparisons, and are applied in populations samples rather than in extended pedigrees.
Bourgain et al. (2001) applied similar methods to extended pedigrees, but this again re-
quired knowing phase and combining pairwise comparisons. Other streak statistics have
also been suggested, for example, Miyazawa et al. (2007) considered steaks of SNP loci
at which individuals share homozygously. Other approaches exploiting IBD in pedigrees
includes the homozygosity-by-descent method of Abney et al. (2002) which has been used
to map recessive traits in known, very large, inbred populations (Newman et al. 2003).

Genomic sharing in a pedigree was modelled by Donnelly (1983) as a random walk on
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the vertices of a hypercube from which the distribution of number and length of genomic
segments shared genome wide by an arbitrary set of relatives can be obtained. Cannings
(2003) also derived results for this model. These results, however, describe the underlying
process and do not account for observed genetic data. Both Thomas et al. (2008) and Leibon
et al. (2008) addressed this problem using the streak statistic, although they differed in how
they evaluated the statistical significance of observed streaks. Leibon et al. (2008) extended
the theoretical results of Miyazawa et al. (2007) for homozygous sharing to the case where
only one haplotype is shared, whereas, Thomas et al. (2008) used multi locus gene drop
simulation. Both methods assumed that the loci being assessed were in linkage equilibrium,
but both sets of authors also acknowledged that this assumption was inappropriate and
likely to lead to underestimates of any p-value, and possible false positive results. It is this
limitation that we seek to address here.

Thomas (2009a) and Thomas (2009b) developed and described methods and programs
for modelling LD using restricted types of graphical models. These models are tractable so
that both estimating them and simulating from them can be done on hundreds of thousands
of loci. Given appropriate controls we can estimate LD models on a genome wide scale, and
given a pedigree structure we can simulate founder haplotypes from the models and use the
multi locus gene drop method to simulate genotypes for the entire pedigree. In what follows
we apply these methods to a re analysis of the prostate cancer linkage to chromosome 1p23
reported by Camp et al. (2005) and previously analyzed using SNP streaks by Thomas et
al. (2008). We show that appropriate modelling of LD is not only feasible on this scale,
but that it is essential for accurately assessing statistical significance. While our focus here
is on streak statistics observed in extended pedigrees, we note that the simulation method
can also be applied to evaluate the significance the other statistics mentioned above, and to
sampling designs using parent-offspring triplets, nuclear families or independent samples.

2 Materials and methods

2.1 SNP streak statistics

Figure 1 shows a pedigree connecting 8 men with prostate cancer. These individuals were
selected from a larger extended pedigree from a study of prostate cancer in Utah. These
cases are connected by a total of 15 meioses to each of 2 recent common ancestors. Assuming
that the total genetic length of the 22 autosomes is 35 Morgans (Broman et al. 1998), the
probability that all 8 cases share any genetic segments IBD is 0.067 (Thomas et al. 2008).

Each of the 8 cases was genotyped by the Center for Inherited Disease Research, using
the Illumina 110K panel (http://www.illumina.com). Of the total of 109299 loci analyzed,
9819 were on chromosome 1. In order to avoid spurious runs of sharing due to low heterozy-
gosity, we discarded SNPs for which the heterozygosity score, as assessed from the controls
described below, was less than 0.2. This left 8016 loci in the analysis, evenly spread over
chromosome 1 with the exception of a large gap at the centromere.

At each locus i we counted the number of observations of each genotype: ni
11, ni

12 and
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Figure 1: A pedigree connecting 8 men with prostate cancer.
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ni
22 so that ni

11+ni
12+ni

22 ≤ n = 8, with inequality when there were some missing genotypes.
Then we calculated the sharing statistic at the ith locus as

Si = n − min(ni
11, n

i
22).

Then, again at each locus, we define Ri(t) to be the longest run containing the locus for
which the values of Si are at least t. We took t = n and t = n − 1 for this study, but
sharing in smaller sets may appropriate if more cases are considered.

These statistics were calculated using a program written by the author which,
like all the programs described here, is freely available from the author’s web site,
http://bioinformatics.med.utah.edu/∼alun. The program for calculating SNP streaks is
named SGS, for shared genomic segments, and is called as follows:

java SGS input.par input.ped > output

where

• input.par is a LINKAGE format parameter file describing the genetic loci.

• input.ped is a LINKAGE format pedigree file giving the pedigree structure and the
genotypes of any assayed individuals. The individuals among who sharing is to be
counted must have their proband status set to 1.

• output is a text file with one line for each marker in the input. Each gives the marker
name followed by Si, Ri(n), Ri(n − 1), Ri(n − 2), and Ri(n − 3).
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The maxima of the Ri(t) statistics over the whole of the data being analyzed are also
output to the screen.

Full details of the LINKAGE file formats can be had on the web at
http://linkage.rockefeller.edu. This format is intended primarily for linkage and segre-
gation analysis and so the distances between loci are specified as recombination fractions.
Since it is useful also to have the physical location of the marker, we make the local con-
vention of encoding this in the marker’s name so that it is printed as part of the output
from SGS. Note that all file names given here and below are just arbitrary examples, they
are not required names.

2.2 LD model estimation

In order to estimate the LD structure of chromosome 1 we used the same control data
that was described by Thomas et al. (2008). These are 52 Utah CEPH controls that were
included as part of the 120 control sample set genotyped by Illumina for the same set of
SNPs.

Graphical models (Lauritzen 1996) are a broad class of statistical models encompass-
ing Bayesian networks, Markov random fields and probabilistic expert systems. They can
tractably model complex relationships between variables. In particular, they can be effi-
ciently estimated from data and used for simulation. The use of graphical models to model
LD was first proposed by Thomas & Camp (2004) who developed a method of model esti-
mation from phase known haplotype data. Thomas (2005) extended this to using unphased
genotypic data by employing a two stage stochastic search approach. Given an initial model
for LD, haplotypes are imputed conditional on the model and the genotype states. The
imputed haplotypes are then used for re estimating the model using the Thomas & Camp
(2004) method. The haplotypes are then re imputed, and so on. While this approach works
well on moderately sized sets of loci, up to a few thousand, it does not scale well beyond
this order of magnitude. Thomas (2009a), however, showed that restricting the class of
models considered to that of interval graphs greatly improved efficiency without sacrificing
modelling properties.

Thomas (2009b) describes an implementation of this approach called IntervalLD which
employs a walking window approach so that the program’s running time scales linearly with
the number of loci being modelled. The program was run as follows:

java IntervalLD input.par control.ped > ldmodel

where

• input.par is the LINKAGE parameter file described above.

• control.ped is a LINKAGE pedigree file giving the genotypes of the control samples.
The controls are unrelated so for each individual the parents are given as 0. If any
relationships are specified in the control data, IntervalLD will ignore them and treat
the observations as unrelated.
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• ldmodel is a text file containing the estimated interval graphical model. The first line
gives the number of alleles seen at each locus. This is followed by one line for each
locus specifying the conditional distribution of alleles at the locus given the states at
the loci that the program has estimated to be relevant. Although the file is human
readable, it is primarily intended for input to other programs as described below.

2.3 Gene drop simulation with LD

Gene drop is a simple method for randomly generating genotypes for a set of related
individuals. Alleles are randomly assigned to the founders of a pedigree and dropped at
random to their offspring and other descendants mimicking Mendelian inheritance. The
single locus method was described by MacCluer et al. (1986). The multi locus method is
similar, but the inheritances at a genetic locus depend on those at the previous locus and
the recombination fraction between them. An implementation of this is given, for instance,
by the MERLIN program (Abecasis et al. 2001). The implementation given here differs
only in that the alleles for the founders are simulated as haplotypes generated from the
distribution specified by the given graphical model. The program SimSGS implements this
to simulate random genotypes to match those in a given input file. This includes matching
the pattern of missing data: if a genotype is missing in the real data it will also be missing
in the simulated. The program is used as follows:

java SimSGS input.par input.ped s ldmodel > output

where

• input.par is the same LINKAGE parameter file as used above with SGS and
IntervalLD.

• input.ped is the same LINKAGE pedigree file as was used to obtain the observed
statistics using SGS. This will specify the pedigree and the genotypes to simulate.

• s is the number of simulations to perform. This parameter is optional, the default
value is 1000.

• ldmodel is a graphical model for LD as estimated above using IntervalLD. This is
also an optional parameter. If it is omitted the allele frequencies given in input.par

are used to simulate data using conventional multi locus gene drop under the assump-
tion of linkage equilibrium.

• output is a text file containing one line for each simulation made. On each line are
the maxima over loci i of Ri(n), Ri(n−1), Ri(n−2), and Ri(n−3) for that simulation.

We also have a program SimSGSRegions which is used with the same syntax as SimSGS
but the file output gives the number of times each locus is contained in the maximum run
simulated.

6



3 Results

Figure 2 plots (a) Ri(8) and (b) Ri(7) for our case data on chromosome 1. The longest
run for all 8 sharing was 64, and for 7 from 8 sharing was 495 occurring at the position
marked A in the plots. This corresponds to the location previously found using the same
method by Thomas et al. (2008) and to the original linkage peak reported by Camp et
al. (2005) for the same family. Other locations with long runs are marked B, C, D and E
on these and following plots. The distribution of locus heterozygosity is shown in figure
2(c) as a cumulative sum chart plotting

∑i
j=1(hj − h̄) against the locus number i where

hj = 2pj(1− pj), h̄ = 1
n

∑n
j=1 hj , and pj is the observed frequency of the minor allele at the

jth locus.
We made three sets of simulations with which to evaluate the statistical significance of

the observations. Two sets of 10000 simulations were made under the assumption of linkage
equilibrium, the first assuming allele frequencies of 0.5 for each allele at each locus, the
second using allele frequencies estimated from the controls. The first of these approaches
is clearly something of a straw man and should not be used in reality, however, it gives us
a base line with which to compare subsequent simulations. The third set of simulations
was made under LD. The model fitting program IntervalLD uses a stochastic search, so
the estimated model will typically differ from run to run. To see whether this had any
influence on the results we made 10 independent LD model estimates from the control data
and simulated 1000 gene drops from each of them. For each set of simulations we obtained
the cumulative probability distribution of the maximum run length for IBS sharing between
all 8, and between 7 of 8 cases. These results are shown in figure 3.

Finally, for three sets of simulations as described above we recorded the probability
that each locus was contained in the longest run of sharing. The probabilities are plotted
against location in figure 4. Note that as the maximum run lengths increase, more loci
are covered by them, hence, the areas under the curves shown in figure 4 changes. The
locations of the peaks seen in figure 2 are also indicated in these plots.

4 Discussion

Several of the issues raised in the simulation analysis of Thomas et al. (2008) have been
addressed here. While the previous simulation program worked on the physical locations of
the markers, IntervalLD works on a genetic map as specified by the recombination fractions
given in the linkage parameter file. This allows specification of recombination hot and cold
spots. The file format also allows different maps for male and female recombinations and
the program interprets and uses these appropriately.

More importantly, we are now able to model LD in the simulations. The example
presented here had 8016 loci. The average time taken for the 10 runs to estimate models
on these loci was just under 400 seconds. However, the program has been demonstrated to
scale linearly with the number of loci. Thomas (2009b) ran the program on over 200000 loci
for 60 control individuals taking just under 700 minutes to complete the model estimation.
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Figure 2: (a) shows Ri(8), the run lengths where all 8 cases share an allele IBS plotted

against the physical location of the loci. (b) shows Ri(7), the run lengths where at least 7

of the 8 cases share an allele IBS. (c) is a cumulative sum chart for the heterozygosities of

the loci: areas of steeply increasing or decreasing slope indicate high or low heterozygosity

respectively.
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Figure 3: These plots show the cumulative distribution functions for the maximum simu-

lated run lengths for which (a) all 8 cases share an allele IBS and (b) 7 of 8 cases share. In

both plots the distribution furthest to the left is that from 10000 simulations when the loci

are assumed to be in linkage equilibrium with equal allele frequencies. The distribution

in the middle is that for 10000 simulations under linkage equilibrium, but with allele fre-

quencies at each locus estimated from control data. On the right of each plot are overlaid

10 distributions each of 1000 simulations under a linkage disequilibrium model estimated

from the control data. The dashed vertical lines show the values observed in the data.
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Figure 4: These plots show the probability, as estimated by simulation, that a locus is

contained in the maximum run of sharing among all 8 cases. (a), (b) and (c) show re-

spectively 10000 simulations under linkage equilibrium with equal allele frequencies, 10000

simulations under linkage equilibrium with estimated allele frequencies, and 10 x 1000

simulations under LD.
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As the largest number of loci that need to be considered together in a genome wide analysis
for 1 million loci are the approximately 100000 loci on chromosome 1, the program is well
able to deal with this scale of analysis. Having estimated a graphical model for LD, the
simulations themselves are reasonably quick. Making 1000 gene drops on the pedigree in
figure 1 takes just under 300 seconds. Again, the gene drop program has been shown to
scale linearly with the number of loci (Thomas 2009b). All the running times given here
are for the author’s HP laptop that runs Java 1.5.0 02-b09 under Linux. It has 4 Gbytes
of memory and two 2.8 GHz central processing units.

Not only is large scale LD modelling feasible, it is also shown here to be necessary.
The distributional shifts seen in figures 3 (a) and (b) due to LD are far greater than
the shifts obtained by using realistic allele frequencies rather than assuming all alleles are
equally frequent. The empirical p-value for a streak of 64 loci on chromosome 1 at which
all individuals share an allele is 0.0037 under linkage equilibrium, but 0.034 under LD.
The change for the run of 495 at which 7 of 8 share is less dramatic, from 0.01 to 0.012
which reflects the extreme nature of this observation: the length of sharing is beyond the
influence of the LD. The empirical p-values under LD here are taken from combining the
10 samples of 1000 observations under the 10 different estimated LD models. However, the
overlaid distributions in figure 3 show that although the models are typically different, the
haplotypes estimated under them are very similar.

Figure 4 also demonstrates the dramatic effects of LD. Under linkage equilibrium with
allele frequencies of 0.5, figure 4 (a) shows that the location of the longest simulated run
length is uniformly distributed across the chromosome. When the control allele frequencies
are used in the pedigree simulation, the longest run is more often at positions such as that
marked B in the figures where there is a run of loci with low heterogeneity. The run of low
heterogeneity at point B is demonstrated by the steep descent of the cumulative sum chart
in figure 2 (c). Note also that since the longest runs are getting longer, more points are
covered by them and there is, therefore, more area under the curve in figure 4 (b) than 4
(a). However, the peaks marked A, C, D and E in figure 2(a) do not correspond to points
at which long runs are simulated under linkage equilibrium in figure 4 (b). The change
from figure 4 (b) to (c) is even greater. We can now see that under LD, the peaks in the
observed data at B, D and E all correspond to positions at which long runs of sharing are
simulated. These peaks cannot, therefore, be taken as evidence of significant sharing due
to selection for a common phenotype.

The conclusions for the validity of the linkage of prostate cancer to chromosome 1p23
are still mixed. The p-value for the run of 64 loci at which all 8 cases share on chromosome
1 is 0.034. This is not significant when we allow for selection of the peak on chromosome
1 as the best of all those seen in a genome wide analysis. Neither is the run of 495 loci
at which 7 from 8 share. A more detailed inspection of the data in this region shows that
it is the same individual who does not share each side of the 64 shared by all. Although
there is clearly an underlying genomic segment shared here IBD by these individuals, this
is not sufficiently unusual in the pedigree to indicate that the sharing is due to selection
for phenotype. On the other hand, we note that the longest runs are rarely simulated
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at position A. This is unlike positions B, D and E which are clearly peaks due to low
heterozygosity and LD, and unlike position C where the run length is near the median of
the distribution of the maximum.

Since this is a re analysis of the pedigree that gave the original lod score of 3.1 reported
by Camp et al. (2005), it can not serve as an independent assessment of the finding. It
does, however, give an indication that the the pattern of IBD sharing in the pedigree is
consistent with linkage. For true confirmation for the result more data is needed.

The pedigree design used here is suited to detecting genes with dominant mode of
expression. For recessive diseases inbred pedigrees could be used, as could random samples
from an inbred population. In this case we would define streaks as runs of loci where
individuals share both alleles in common, as described by Miyazawa et al. (2007). It is
also informative to look for streaks of loci where sampled individuals are homozygous, but
not necessarily for the same haplotype, as this may actually indicate hemizygosity and
the presence of a chromosomal deletion. In either case, the statistical significance can
be assessed by simulations that need to take LD into account. Thus, the estimation and
simulation programs described here are directly applicable.

While this work goes some way to addressing the effects of LD on streak statistics,
there are other issues. Perhaps the most pressing is the sensitivity of streak statistics to
genotyping error. A single misclassification can, potentially, end a streak. The presence of
two longer than average runs adjacent to each other, as occasionally seen in our analyses,
would suggest that underlying these is an even longer run that has been broken up by
genotyping error. If we take the Si as our basic statistics, then the problem is essentially
one of detecting the change points in their distribution: the more individuals that share a
genomic segment, the higher Si should be on average, even in the presence of genotyping
error. One approach to this may be to replace the Ri statistics with more robust methods
from the field of process control. For instance, cumulative sum methods, or CUSUM charts,
could be used with significance again being assessed using simulation under LD. This is an
approach that we wish to investigate in future work.
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Abstract

Estimation of graphical models whose conditional independence graph comes from the general class of decomposable graphs
is compared with estimation under the more restrictive assumption that the graphs are interval graphs. This restriction is shown to
improve the mixing of the Markov chain Monte Carlo search to find an optimal model with little effect on the haplotype frequencies
implied by the estimates. A further restriction requiring intervals to cover specified points is also considered and shown to be
appropriate for modelling associations between alleles at genetic loci. As well as usefully describing the patterns of associations,
these estimates can also be used to model population haplotype frequencies in statistical gene mapping methods such as linkage
analysis and association studies.
c© 2008 Elsevier B.V. All rights reserved.

1. Introduction

It is important in many type of statistical analyses in genetics to have accurate models for the frequency distributions
of alleles or haplotypes at genetic loci of individuals in a population. This is true both for association testing involving
unrelated cases and controls, and for linkage analysis where the founders of a pedigree are assumed to be randomly
selected from the population at large. In each of these cases, using inappropriate distributions can lead to both the loss
of power to detect the effects of genes on phenotypes, and to excessive false positive gene findings (Amos et al., 2006).
For an analysis using a single genetic locus, the requirement is simply a good estimate of the allele frequencies at that
locus in the appropriate population. If a set of loci are used, and they are spaced sufficiently far apart, it is reasonable to
assume that they are in linkage equilibrium in which case the probability of a haplotype is the product of the individual
locus allele probabilities. However, if loci are densely spaced along the genome, strong correlations will exist between
alleles at nearby loci. That is, the loci are in linkage disequilibrium (LD) (Ott, 1985). Failure to incorporate LD in the
modeled joint distribution of alleles will distort the frequencies of haplotypes and can again result in excessive false
positives and loss of statistical power in linkage or association analyses. Other types of analysis, such as mapping
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Fig. 1. An interval set and its corresponding interval graph.

based on segments of DNA shared between distant relatives (Thomas et al., 2008) also need to model haplotype
frequencies accurately.

Methods developed to estimate general multi locus LD models that can be used in genetic mapping include
that of Stephens et al. (2001), as implemented in the PHASE program and developed in the more recent
FASTPHASE program (Scheet and Stephens, 2006), and general graphical modelling implemented in the HapGraph
program (Thomas and Camp, 2004; Thomas, 2005). Both these approaches, while computationally intensive, can be
applied to hundreds of loci, and can be incorporated into linkage and association analyses (Thomas, 2005, 2007).
However, current genotyping assays involve over a million loci genome wide which makes the modeling problem
intractable with current methods, even when the data is broken down to smaller components such as chromosome
arms. In this paper, we consider the effects on computational tractability and model accuracy of modifications to
graphical modelling methods which limit the class of graphs possible.

When the joint distribution of a set of random variables implies many independences or conditional independences
between subsets of the variables, it can often be usefully considered as a graphical model. A graphical model has two
elements: a conditional independence, or Markov graph, G, that represents the structure of the relationships between
the variables and a set of parameters, M . If the distribution of X1, . . . Xn factorizes as

P(X1, . . . Xn) =
∏

i

f (Ti ) where Ti ⊂ {X1, . . . Xn}, (1)

the vertices of the Markov graph are the variables X1, . . . Xn with edges connecting pairs of variables if they appear
together in one or more of the Ti . While the structure of a graphical model is often apparent from modelling
assumptions, it is also possible to estimate it from a set of multivariate observations. This was originally developed by
Højsgaard and Thiesson (1995) with more recent work by Giudici and Green (1999) and Thomas and Camp (2004)
on continuous and discrete variables respectively. In all this work models are restricted to the class of decomposable
graphical models that are well behaved, tractable and flexible. This class is defined and the main features of estimation
methods are described below. The Markov graph of a decomposable model is a decomposable graph. Both Giudici
and Green (1999) and Thomas and Camp (2004) use stochastic search methods for finding an optimal model, or
Markov chain Monte Carlo (MCMC) methods for sampling from the posterior distribution of models. In each of these
cases it is necessary, given a decomposable graph G to propose a new graph G ′ and accept or reject it as the new
incumbent according to appropriate probabilities. If G ′ is decomposable, then Giudici and Green (1999) have shown
that the value of the target function for the proposed model can be found very quickly, in time independent of the size
of the graph. However, it is not straightforward to ensure the decomposability of G ′ in advance so that it is necessary
to check for this condition and reject graphs that are not decomposable. As we show below, this rejection step makes
this general approach extremely inefficient when the number of variables is large. However, it can be avoided if we
restrict the graphs considered to those in a more manageable subclass: the class of interval graphs.

A graph is an interval graph if its vertices can be made to correspond to subintervals of the real line with pairs of
vertices joined by an edge if their corresponding intervals overlap. This is illustrated in Fig. 1 and described more
fully below. As Golumbic (1980) shows, all interval graphs are decomposable. If we now work with a set of intervals,
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one for each of the random variables in our model, it is easy to perturb these by moving and resizing them and yet be
sure to stay within the class of interval graphs. If, furthermore, we find that the restriction to the set of interval graphs
does not seriously affect our ability to accurately model the data, then we have a simpler and more computationally
efficient estimation method.

Although this idea is developed generally to model associations between variables in any context, heuristically, it
seems particularly appropriate for LD modelling. On average, according to Malecot’s model, pairwise LD decreases as
the distance between loci increases (Morton, 2002), however, on a fine scale, more complex patterns appear. Thomas
(2007) showed that, at least when dealing with small genomic regions, the haplotype frequencies estimated by both
the PHASE program and graphical modelling are quite different to those obtained by fitting low order Markov models.
Because of the linear arrangement of genetic loci along a chromosome, and the expectation that LD decreases with
distance, modeling with interval graphs has clear intuitive appeal: most statistical geneticists have some informal
notion of the extent of LD around a locus. In what follows, therefore, we consider not only the complete class of
interval graphs which may have general applications, but also a more constrained subclass which will be appropriate
when there is some reason to expect that a linear arrangement of the variables affects correlation.

2. Methods

2.1. Estimating graphical models

Consider a graph G = G(V, E) with vertices V and edges E . A subset of vertices U ⊆ V defines an induced
subgraph of G which contains all the vertices U and any edges in E that connect vertices in U . A subgraph induced
by U ⊆ V is complete if all pairs of vertices in U are connected in G. A clique is a complete subgraph that is maximal,
that is, it is not a subgraph of any other complete subgraph.

A graph G is decomposable if and only if the set of cliques of G can be ordered as (C1,C2, . . . ,Cc) so that

if Si = Ci ∩

c⋃
j=i+1

C j then Si ⊂ Ck for some k > i. (2)

This is called the running intersection property. This condition is equivalent to requiring that the graph is triangulated,
or chorded, (Golumbic, 1980), that is, it contains no unchorded cycles of four or more vertices. The sets Si are called
the separators of the graph, and although several orderings typically give the running intersection property the cliques
and separators are uniquely determined by the graph structure.

A graphical model with a decomposable Markov graph is a decomposable model and joint distribution of the
variables in the model can be decomposed in terms of the marginal distributions of the cliques and separators:

P(X1, . . . Xn) =
∏

i

P(Ci )

P(Si )
. (3)

For discrete variables these marginals are simple multinomials, and so, given a set of observations, it is straightforward
to calculate maximum likelihood estimators of the parameters, the maximized likelihood and the degrees of freedom.
Multivariate Gaussians are similarly tractable in the continuous case. The decomposability then allows us to combine
these to obtain the overall maximized log likelihood and degrees of freedom

log L̂(G) =
∑

i

log L̂(Ci )−
∑

i

log L̂(Si ), (4)

and

df(G) =
∑

i

df(Ci )−
∑

i

df(Si ). (5)

Model estimation can then be based on optimizing a penalized likelihood information criterion

IC(G) = log L̂(G)− α df(G), (6)
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where α is some arbitrary constant. Højsgaard and Thiesson (1995) use a deterministic optimization while Giudici
and Green (1999) and Thomas and Camp (2004) use stochastic search or sampling methods. The stochastic methods
require that an incumbent decomposable graph G is perturbed, for example, by adding or deleting an edge, to give a
proposed new graph G ′. If G ′ is not decomposable it is immediately discarded, otherwise it is accepted or rejected
with the appropriate probabilities for Metropolis (Metropolis et al., 1953) or Hastings (1970) sampling, or simulated
annealing optimization (Kirkpatrick et al., 1982). Giudici and Green (1999) give very fast methods for evaluating
the rejection probability whose computational requirements do not increase with the number of variables being
considered. Their algorithm for determining whether G ′ is decomposable can take order n time in the worst case,
but in practice is very quick. However, for large graphs, the probability that a random perturbation to G will result
in decomposable G ′ is small. For instance, if we consider adding or subtracting an edge there are n(n − 1)/2 pairs
of vertices to choose from, whereas, intuitively, we would expect O(n) of these flips to result in a decomposable
proposal.

2.2. Interval graphs

A graph is an interval graph if its vertices can be made to correspond to intervals of the real line and its edges
connect pairs of vertices if and only if the corresponding intervals overlap. This is illustrated in Fig. 1. Intuitively, an
interval graph would be expected to be long and thin, and this is indeed the case: this notion can be formalized in terms
of the longest path in the graph and how far a vertex can be from this path (Golumbic, 1980). Moreover, an interval
graph is always decomposable. Thus, if we restrict our search for decomposable models to those with interval Markov
graphs, we can work with the more tractable interval representations of the graphs instead of the graphs themselves.
Whatever perturbations to the solution then involve, for example, moving an interval or changing its length or more
complex manipulations involving multiple intervals, the result will always give an interval graph and a decomposable
model. The benefits of this can be twofold. First, the perturbations can be more radical than simply adding or deleting
an edge and so can potentially give better mixing properties for the sampler or optimizer. Second, we do not need to
waste time proposing nondecomposable solutions.

It should be recognized, however, that we are sampling interval sets, not graphs directly. Since interval graphs can
be represented as interval sets in different numbers of ways, those graphs with more interval set representations will
be oversampled, and those with fewer will be undersampled. While this might be accounted for in the Metropolis
or Hastings rejection probability, we will assume that this effect is small when we are sampling graphs of similar
probability, and justify this empirically below.

2.3. Efficient implementation

In order to take advantage of this idea, we need two things. One is to have a data structure that allows interval sets
to be managed and queried efficiently. The other is to be able to evaluate the maximized log likelihood and degrees of
freedom of a proposed model quickly, and preferably in time that does not depend on the size of the problem.

The first issue is resolved by using a standard data structure called an interval tree (de Berg et al., 2000). The root of
the tree is associated with a fixed point, typically the midpoint of a finite region that contains all the intervals. This root
node stores a list of the intervals that cover the fixed point. All intervals that lie completely to the left of the point are
delegated to a daughter node whose fixed point is the mid point of the left region, and similarly for intervals which lie
completely to the right of the fixed point. The structure is built up recursively in this way until all intervals are stored
in a list at one of the nodes in the tree. This structure allows addition of new intervals, deletion of existing intervals,
querying for intervals that cover a particular point, and querying for intervals that overlap with a given interval to be
done in O(log n) time.

To address the second issue of efficient likelihood recalculation, we first note that the set of intervals that cover any
point on the line correspond to a complete cutset of the graph (Golumbic, 1980). A set of vertices K is a cutset if it
partitions the vertices of G into L , M and K itself such that all paths in G from a vertex in L to a vertex in M must
pass through a vertex in K . The separators Si of G are all complete cutsets, in fact, all the minimal complete cutsets.
The complete cutsets defined by points on the line will include these separators and also complete cutsets that are not
minimal.



Author's personal copy

1822 A. Thomas / Computational Statistics and Data Analysis 53 (2009) 1818–1828

Fig. 2. A subregion partitions the interval graph.

For any graphical model, if K is a complete cutset then the variables L are conditionally independent of M given
the value of K . That is

P(K L M) = P(L|K )P(M |K )P(K ) =
P(L K )P(M K )

P(K )
. (7)

If we now consider a subregion (x, y) of the line we can define three induced subgraphs of G: A, B and D the
subgraphs induced by the intervals that overlap with (−∞, x), (y,∞) and (x, y) respectively, so that A ∩ D and
B ∩ D will be the complete cutsets defined by the intervals that cover the points x and y. This is illustrated in Fig. 2.
The subregion (x, y) thus defines conditional independences that can be expressed as

P(AB D) =
P(A)P(B)P(D)

P(A ∩ D)P(B ∩ D)
. (8)

If we now alter the graph G to make G ′ in such a way that only intervals that lie completely in (x, y) are changed,
D may change to D′ but A and B will not be affected. Moreover, A ∩ D′ = A ∩ D and B ∩ D′ = B ∩ D. Hence,

P(G ′)

P(G)
=

P(A)P(B)P(D′)

P(A ∩ D′)P(B ∩ D′)
×

P(A ∩ D)P(B ∩ D)

P(A)P(B)P(D)
=

P(D′)

P(D)
. (9)

In this way, the change in the global joint probability can be evaluated very quickly from local changes.
As with Eq. (3), this extends to allow us to quickly evaluate changes in the maximized log likelihood and degrees

of freedom, and hence the information criterion IC(G ′). So, for perturbations of G that involve changing just one
interval, we need only consider the graph corresponding to the portions of the line that lie under the interval before
it is changed and after it is changed. Hence, we can very efficiently evaluate the target function for the proposed
graph G ′.

In our implementation of this scheme, intervals are initially allocated with midpoints evenly distributed between 0
and 1, with small lengths so that no intervals overlap. Perturbations consist of randomly choosing an interval and either
giving it a new midpoint chosen uniformly at random in (0, 1), or giving it a new length chosen from an exponential
distribution, or both.

2.4. Constrained interval graphs

When the variables being modelled can be ordered linearly it may be appropriate to reflect this in the structure of
the interval graph. For example, genetic loci have physical positions along a chromosome and we strongly expect the
greatest correlations to be between alleles at loci that are nearest each other. In this case we can require the interval
that represents a particular locus to cover its physical location. We also alter the definition of the graph to require
intervals to overlap by some minimal amount in order to add an edge between the corresponding vertices. Any vertex
corresponding to an interval of length less than this minimal amount will therefore not be connected to any other
vertices. This is illustrated in Fig. 3. This extra condition gives some flexibility to the model. For example, with
reference to Fig. 3, suppose that locus 2 appears from the data to be independent of all other loci, but that loci 1 and
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Fig. 3. An interval graph constrained by the physical location of genetic loci.

3, and 3 and 4 are very strongly correlated. Without this final requirement, the interval structure would force an edge
between 2 and 3 making the model more complex than necessary. Such a situation may often arise with genetic loci
where the frequency of the less frequent allele is very low. It is trivial to show that requiring a minimal overlap still
gives an interval graph.

In this case the intervals are initially set as for the general interval graph. Perturbations involve randomly extending
or reducing the spans to each side of the required fixed point by amounts generated from and exponential distribution.

This approach can also be used if an ordering of the variables is know but distances are not. In this case we can
assign the variables to arbitrary evenly spaced points along the line.

2.5. Programs

General and constrained interval graph searches have been incorporated into the author’s HapGraph
program (Thomas and Camp, 2004) which can be used both as a generic graphical model estimator, or for the
specific case of modelling allelic association. This latter case requires an extra step to account for observing unordered
genotypes as opposed to complete phase known haplotypes. Both versions allow for missing data by random
imputation. Full details of the methods are given by Thomas (2005). The program is written completely in Java
thus is platform independent, and can be obtained from http://bioinformatics.med.utah.edu/˜alun.

3. Results

We illustrate the effects of the model restrictions described here using data for subsets of the single nucleotide
polymorphisms on chromosome 1 genotyped in the sample of 60 Yoruba people from Ibadan, Nigeria by the HapMap
project (The International HapMap Consortium, 2005). This sample is conventionally abbreviated as YRI, and the
data was from build 36 dated 2 May 2007. The loci that were monomorphic in this sample were not considered in
these analyses. We used subsets of the first 20,000 remaining loci in what follows.

In order to first consider the computational effects of model restrictions we ran three versions of the HapGraph
program. The first fitted a general decomposable graph using the rejection method of Giudici and Green (1999), which
is the standard form of the program. The other two implemented a general interval graph and a constrained interval
graph search as described above. HapGraph’s graphical user interface that shows the graph as it is being updated was
not used so as to avoid incorporating the processor time needed for graphical rendering in the comparisons. Fig. 4
shows the times taken by each of the three methods to perform one million Metropolis updates of the graph for data
on sets of between 20 and 20,000 loci. Fig. 5 plots the largest penalized log likelihood score seen in each of the runs.
All the programs were run on the author’s laptop computer which has a 2.33 GHz dual core central processing unit
running Red Hat Linux and Java version 1.5.

For the decomposable graph search we recorded both the number of random proposals that resulted in a
decomposable graph, and the number of these proposals that were accepted based on the usual Metropolis
probabilities. For both types of interval graph searches we recorded the number of proposed new interval
configurations that were accepted and also the number of these that resulted in a different implied graph. These counts
are shown in Fig. 6. For all the versions of the program, the starting configuration used was the trivial graph, that is
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Fig. 4. The computer times required for one million MCMC iterations by number of genetic loci when the search is over general decomposable
graphs, general interval graphs and constrained interval graphs.

Fig. 5. The largest penalized log likelihood score seen in a sample of 1,000,000 MCMC simulations by number of loci.

the graph with a vertex for each locus but no edges. Thus, in the early stages of each search the graph was very sparse
and almost all randomly chosen pairs of vertices could legitimately be connected to give a decomposable model. Also,
in the early stages almost any change would tend to be accepted. Therefore, in order to check the performance of the
methods closer to the equilibrium state we also recorded these counts in the last 100,000 (10%) of iterations. These
are also shown in Fig. 6.

We then compared the haplotype frequencies implied by models optimized for each of the three classes of
graph using simulated annealing. To avoid comparing very small frequencies we considered only haplotypes for
the first 20 polymorphic loci on chromosome 1. Fig. 7 gives pairwise scatter plots of the frequencies estimated under
the general decomposable models against those seen for general and constrained interval graphs. As an external
reference we also show the haplotype frequencies estimated using the FASTPHASE program, those estimated with no
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(a) Total acceptances for decomposable graphs. (b) Total acceptances for interval graphs.

(c) Total acceptances for constrained interval graphs. (d) Acceptances in last 10% of iterations for decomposable
graphs.

(e) Acceptances in last 10% of iterations for interval graphs. (f) Acceptances in last 10% of iterations for constrained
interval graphs.

Fig. 6. The numbers of accepted proposals in all 1,000,000 MCMC simulations and in the final 100,000 simulations under the three classes of
graphs considered by number of loci, shown as percentages.

accommodation for LD, that is, under the assumption of linkage equilibrium, and those estimated under the assumption
that dependence is limited to a first order Markov chain and a fifth order Markov chain.
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Fig. 7. Haplotype frequencies for the first 20 loci estimated for the YRI data for an optimized model with general decomposable graph compared
with models with general interval and constrained interval graphs. Also compared are haplotype frequencies estimated using FASTPHASE, and
those estimated under linkage equilibrium, and under first and fifth order Markov dependence.

4. Discussion

In absolute terms, as shown in Fig. 4, the computational performances for the three methods are similar. In the
long run, the time required is quadratic although for up to about 10,000 variables performance is very close to linear.
This difference is probably due to the increasing amounts of work done by the Java garbage collector to reclaim heap
space. Even for the substantial numbers of loci used here, none of the methods takes prohibitive time or storage.
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Although for below around 15,000 loci each of the interval graph methods takes more absolute time than the
decomposable graph method, the amount of work done is substantially more as shown by Fig. 6. Fig. 6(b) and (c)
show that around 25% of updates for the interval graph methods are accepted, of which 5% to 10% give rise to new
graphs. For the decomposable graph method the percentage of proposals accepted decreases rapidly, see Fig. 6(a).
The difference is far more marked in the last 100,000 iterations when the effect of initial conditions is minimized.
Of the last 100,000 times that a random pair of 20,000 loci were selected, in only 70 cases could the pair be either
disconnected, if they were previously connected, or connected, if they were previously disconnected, so that the
resulting graph was decomposable: clearly the rejection method becomes very inefficient, see Fig. 6(d). On the other
hand, for constrained interval graphs, the acceptance rate settles down very quickly at about 25%, and the accepted
interval configurations that give a new graph settles at about 5%, Fig. 6(f).

The acceptance rate for general interval graphs actually increases with the number of loci, even for the last 100,000
iterations. However, this is likely to be due to long-term residual effects of initial conditions: in effect, for general
interval graphs on large numbers of vertices the Markov chain is not mixing well. This poor mixing is also reflected
in Fig. 5. Since constrained interval graphs are a subset of general interval graphs which are a subset of decomposable
graphs, the true optimal values of the penalized log likelihood scores must increase through that sequence of inclusion.
However, the maxima actually found reverse that order showing that the smaller space of constrained interval graphs
is far more efficiently searched than its supersets.

The statistical effects of model subclassing are shown in Fig. 7. For this example the differences between haplotype
frequencies estimated from models in each of the three classes of graphs are very similar, see Fig. 7(a) and (b).
The results from FASTPHASE are also similar, Fig. 7(c). However, frequencies under linkage equilibrium or simple
Markov dependence, even up to fifth order, show marked differences with far more points along or close to the axes
of Fig. 7(d), (e) and (f). The distribution of distances between the 20 loci used here is quite skewed, with a mean of
37.97 kilo bases but median of only 2.33 kilo bases. Thus, haplotype frequencies derived from general decomposable,
general interval, and constrained interval models are similar to each other and also similar to those derived from
FASTPHASE. In contrast, ignoring LD completely or modelling it with small lag Markov models gives misleading
results even though they may require more parameters than interval graphs.

Overall, therefore, there are clear computational benefits and little costs in terms of model flexibility to using
interval graphs. In particular, in the context of LD modelling, constrained interval graphs have considerable practical
advantages. As a final comment, note that the localization of the interactions implied in the constrained interval
graph method means that loci sufficiently far apart can be considered separately. Thus, although not exploited by the
programs described here, this would allow a moving window implementation that scales linearly with the number of
loci and be feasible on a genome wide level.
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a b s t r a c t

Given a decomposable graph, we characterize and enumerate the set of pairs of vertices
whose connection or disconnection results in a new graph that is also decomposable. We
discuss the relevance of these results to Markov chain Monte Carlo methods that sample
or optimize over the space of decomposable graphical models according to probabilities
determined by a posterior distribution given observed multivariate data.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The flexibility and tractability of decomposable graphical models make them an attractive option for fitting to a broad
array of complexmultivariate data types. Commonly, theMarkov, or conditional independence, graph of the graphicalmodel
is regarded as unknown, and is an objective of inference, along with parameters of the joint probability distribution of
the data. This is the setting, of joint structural and parametric inference, that is considered here. Højsgaard and Thiesson
(1995) developed a penalized likelihood approach to graphical model estimation that they implemented in the BIFROST
program, which used a deterministic search method to find an optimal model. Other authors have used random methods
to optimize the model, or sample from well fitting models, in effect implementing Metropolis–Hastings (Metropolis et al.,
1953; Hastings, 1970) or simulated annealing (Kirkpatrick et al., 1982) samplers for the posterior probability distribution
on decomposable graphical models corresponding to the penalized likelihood. Giudici and Green (1999) developed such
methods for Gaussian models, while Thomas and Camp (2004) and Thomas (2005) applied this approach to modeling
discrete distributions for allelic association between genetic loci in the same genomic region. The programs developed for
this latter application can also be used to estimate a graphical model for general finite valuedmultivariate data. More recent
work in graphical model estimation includes Jones et al. (2005) and Dobra et al. (2003).
Common algorithmic elements in these approaches are, given a decomposable graphical model with Markov graph G, to

propose a new graph G′ by either adding or deleting an edge, checking that the G′ is decomposable, calculating its likelihood
and prior probability, and hence either accepting or rejecting the proposal as appropriate according to the posterior
probabilities. Implemented naively, checking for decomposability of G′, using a maximum cardinality search (Tarjan and
Yannakakis, 1984) for example, will take time of order |V | + |E| where V and E are respectively the vertex and edge sets
of G. Calculating the likelihood and prior of G′ directly is also a substantial computation of order |V |. However, Giudici
and Green (1999) showed that establishing the decomposability of G′, given the decomposability of G, could be done in
close to constant time when the perturbations involve either adding or deleting an edge and, moreover, that the difference
in likelihood and prior between G and G′ depends only on local differences that can be evaluated in time independent of
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the size of the graph. These results allow for much faster sampling and optimization methods even for moderately large
graphs. For example, the HapGraph program (Thomas, 2005) for estimating graphical models for allelic association between
genetic loci has been changed to use Giudici and Green’s method and so works in reasonable time for several thousand
variables.
However, for very large graphs the probability that the addition or deletion of a randomly proposed edge results in a

decomposable graph becomes vanishingly small. Intuitively, for the relatively sparse graphicalmodels often seen in practice,
we would expect the number of allowable changes to be approximately linear in the size of the graph, whereas the number
of all pairs is quadratic. Thus, as the size of the problem increases, any rejection algorithm becomes very inefficient. Recent
advances in technology, particularly in molecular biology, allow the simultaneous measurement of hundreds of thousands
of variables in a single assay, so, in this field at least, this low acceptance rate is a real obstacle to the use of graphical model
based inference.
This problem could be avoided by characterizing and enumerating the set of pairs of vertices whose connection or

disconnection results in a decomposable model, and then sampling a proposed perturbation with uniform probability from
this set. Identifying the pairs whose disconnection results in a decomposable graph is easily done using Giudici and Green’s
result, and we illustrate this below. Identifying pairs which can be connected while preserving decomposability is more
involved, but we develop here a framework that allows this and again provide an illustrative example.

2. Definitions and preliminary results

We begin by reviewing some definitions and standard properties of decomposable graphs and junction trees. A complete
treatment of the topic is given by Lauritzen (1996).
Consider a graph G = G(V , E) with vertices V and edges E. A subset of vertices U ⊆ V defines an induced subgraph of G

which contains all the vertices U and any edges in E that connect vertices in U . A subgraph induced by U ⊆ V is complete if
all pairs of vertices in U are connected in G. A clique is a complete subgraph that is maximal, that is, it is not a subgraph of
any other complete subgraph.

Definition 1. A graph G is decomposable if and only if the set of cliques of G can be ordered as (C1, C2, . . . , Cc) so that for
each i = 1, 2, . . . , c − 1

if Si = Ci ∩
c⋃

j=i+1

Cj then Si ⊂ Ck for some k > i. (1)

This is called the running intersection property. Note that decomposable graphs are also known as triangulated or chordal
graphs and that the running intersection property is equivalent to the requirement that every cycle of length 4 or more in
G is chorded.
The sets S1, . . . , Sc−1 are called the separators of the graph. The set of cliques {C1, . . . , Cc} and the collection of separators

{S1, . . . , Sc−1} are uniquely determined from the structure ofG, however, theremaybemanyorderings that have the running
intersection property. The cliques of G are distinct sets, but the separators are generally not all distinct. Let S[1], . . . , S[s] be
the distinct sets contained in the collection of separators.

Definition 2. The junction graph of a decomposable graph has nodes {C1, . . . , Cc} and every pair of nodes is connected. Each
link is associated with the intersection of the two cliques that it connects.

Note that for clarity wewill reserve the terms vertices and edges for the elements of G, and call those of the junction graph
and its subgraphs nodes and links.

Definition 3. Let J be any spanning tree of the junction graph. J has the junction property if for any two cliques C and D of G,
every node on the unique path between C and D in J contains C ∩ D. In this case J is said to be a junction tree.

For illustration, Fig. 1 gives an example of a decomposable graphwhile Fig. 2 shows one of its possible junction trees. Some
authors first partition a graph into its disjoint components beforemaking a junction tree for each component, combining the
result into a junction forest. The above definition, however, will allow us to state resultsmore simplywithout having tomake
special provision for nodes in separate components. In effect, we have taken a conventional junction forest and connected
it into a tree by adding links between the components. Each of these new links will be associated with the empty set and
have zero weight. Clearly, this tree has the junction property. Results for junction forests can easily be recovered from the
results we present below for junction trees.
A junction tree for Gwill exist if and only if G is decomposable, and algorithms such as themaximal cardinality search of

Tarjan and Yannakakis (1984) allow a junction tree representation to be found in time of order |V | + |E|. The collection of
clique intersections associated with the c − 1 links of any junction tree of G is equal to the collection of separators of G. The
junction property ensures that the subgraph of a junction tree induced by the set of cliques that contain any set U ⊆ V is a
single connected tree.
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Fig. 1. A decomposable graph containing 23 vertices in 4 disjoint components.

Fig. 2. One possible junction tree for the graph shown in Fig. 1. The 16 cliques are the vertices of the junction tree and are shown as ovals. The 15 clique
separators are represented by the edges of the graph and each edge is associatedwith the intersection of its incident vertices. These intersections are shown
as rectangles. Note that some of these intersections are empty.

3. Enumerating allowable perturbations

Frydenberg and Lauritzen (1989) and Giudici and Green (1999) gave efficient methods for checking that G′ is
decomposable, given that G is, when the perturbation scheme involves respectively disconnecting or connecting a random
pair of vertices. Using our definition of a junction tree, we can restate their results as follows.
• Removing an edge (x, y) from G will result in a decomposable graph if and only if x and y are contained in exactly one
clique.
• Adding an edge (x, y) to G will result in a decomposable graph if and only if x and y are unconnected and contained in
cliques that are adjacent in some junction tree of G.

Thus, enumerating the disconnectible pairs of vertices is easy to do. Having found the cliques of G, we simply visit each
in turn and count the number of edges that appear only in that clique. If C is the unique clique containing (x, y), we say that
the disconnection of (x, y) is allowed by C .
Characterizing connectible pairs of vertices, however, is more complicated. If we keep track of the junction tree J

representing our incumbent graph in the course of a sampling scheme, it is not enough to check the links of J to see whether
x and y are in adjacent cliques. We also have to, in effect, consider all possible junction trees equivalent to J . To achieve this
we first show that the set of connectible pairs can be partitioned over the distinct separators of G. We then give a method
for identifying the pairs corresponding to each distinct separator.
Let x and y be unconnected vertices of decomposableGwhose connection results in a newdecomposable graphG′. Giudici

and Green’s condition ensures that G must have cliques Cx 3 x and Cy 3 y that are linked in some junction tree J of G. Let
S = Cx ∩ Cy be the intersection associated with the link. Under this assumption the two following results hold.

Proposition 4. There are no cliques C ′x 3 x and C
′
y 3 y with either C

′
x 6= Cx or C

′
y 6= Cy that are adjacent in J.
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Fig. 3. T{3} , the connected subtree of the junction graph shown in Fig. 2 induced by the cliques that contain the separator {3}.

Fig. 4. F{3} , the forest obtained by from the tree shown in Fig. 3 by deleting edges associated with the separator {3}.

Proof. Assume for the sake of contradiction that such C ′x and C
′
y do exist. By the junction property there is a path from C

′
x

to Cx in J through nodes that all contain x, and similarly one from C ′y to Cy through nodes containing y. Since Cx and Cy are
not both equal to C ′x and C

′
y, at least one of these paths has length greater than 0. Also, since x and y are not connected they

cannot appear in the same clique so these paths do not intersect. Thus, since Cx and Cy are adjacent, a link between C ′x and
C ′y creates a cycle of at least 3 nodes violating J ’s tree property. �

Proposition 5. Let C ′x 3 x and C
′
y 3 y be cliques of G that are adjacent in some junction tree J

′
6= J . Let S ′ = C ′x ∩ C

′
y. Then

S ′ = S.
Proof. Consider the positions of C ′x and C

′
y in J . Again we construct the unique path in J from C

′
x to Cx, Cx to Cy and Cy to C

′
y,

although it is possible now that C ′x = Cx and C
′
y = Cy in which case the path has length 1. By the junction property S

′ must
be contained in each node along the path, and in particular S ′ ⊆ Cx and S ′ ⊆ Cy. Hence S ′ ⊆ Cx ∩ Cy = S. By similarly
considering the path from Cx to Cy in J ′ we also have that S ⊆ S ′, and so S ′ = S. �

These two results immediately give us the following.

Theorem 6. The set of all possible connectible pairs of vertices of a decomposable graph G can be partitioned according to the
distinct separators of G. The subset of connectible pairs for a particular distinct separator S are those that appear in cliques adjacent
in some junction tree and whose intersection is equal to S. We say that these pairs are allowed by S.

Let TS be the subtree of J induced by the cliques that contain the distinct separator S. The junction property ensures
that TS is a single connected subtree. For example, Fig. 3 shows T{3}, the subtree of the junction tree in Fig. 2 defined by the
separator {3}. Then, let FS be the forest obtained from TS by deleting all the links associated with S. For example, Fig. 4 shows
the forest obtained by deleting links associated with the separator {3} from T{3}. If we now reconnect the subtrees of FS by
inserting copies of the separator S to make a new tree T ′S say, and then replace TS in J by T

′

S to make a new spanning tree J
′, J ′

will also be a junction tree of G because it spans all the cliques of G and has the same collection of separators associated with
the links. Moreover, since FS contains the only cliques of G that contain S, this represents all the ways in which the edges
associated with S can be rearranged to make a new junction tree.
We can then characterize the pairs allowed by S as follows.

Theorem 7. A connection (x, y) is allowed by a distinct separator S if and only if x 6∈ S, y 6∈ S and x and y are in cliques that are
nodes of different subtrees of FS .



Author's personal copy

1236 A. Thomas, P.J. Green / Computational Statistics and Data Analysis 53 (2009) 1232–1238

Proof. We have established that the set of equivalent junction trees consists precisely of those obtained by inserting links
associated with S into the gaps in FS so as to form a tree. Then by Theorem 6, we only have to look at the cliques (A∪S, B∪S)
at either end of those links associated with S, and by Giudici and Green’s result S allows connecting (x, y) if and only if x ∈ A
and y ∈ B or vice versa. �

4. Method summary

It is already established that the set of disconnectible pairs of G can be partitioned among the cliques of G (Giudici and
Green, 1999). Theorem 6 now establishes a corresponding result for the connectible pairs: that they can be partitioned
among the distinct separators of G.
However, not all the edges in any given clique are disconnectible, only those that appear in no other cliques. The junction

property makes this easy to check: if a pair of vertices (x, y) contained in clique C is also contained in another clique, they
must appear in a neighbor of C in the junction tree, thus only the neighbors of C in J need to be checked. Let the number of
pairs of disconnectible vertices allowed by C be β(C).
Theorem 7 allows us to similarly find the connectible pairs allowed by any distinct separator S. These are pairs of vertices

that do not appear in S and which do not appear in cliques in the same subtree of FS . If we let mS be the number of times a
distinct separator S appears in the collection of all separators {S1, . . . , Sc−1}, since FS is obtained by deleting ms links from
TS , it must comprise mS + 1 subtrees. Let Aj be the union of the sets of vertices in the cliques of the jth subtree of FS . Let
aj = |Aj − S|, or aj = |Aj| − |S| since S must be contained in each Aj, and let b =

∑mS+1
i=j aj. The number of connectible pairs

allowed by S must therefore be

α(S) =
1
2

mS+1∑
j=1

aj(b− aj).

Hence, an outline of a method to enumerate the neighborhood of a decomposable graph G is as follows:
• Given a decomposable graph G find any junction tree representation J .
• For each clique Ci of G:
– For each pair of vertices (x, y) in Ci check that {x, y} is not a subset of any neighboring clique of Ci in J .
– β(Ci) is the number of such pairs.
• The number of disconnectible edges in G is

∑
i β(Ci).

• For each distinct separator S[i] of G:
– Identify TS[i] the connected subtree of J induced by the cliques containing S[i].
– Find JS[i] by deleting from TS[i] the links corresponding to the separator S[i].
– Calculate aj for each of themS + 1 components of FS[i] .
– Hence find α(S[i]) = 1/2

∑
j aj(b− aj).

• The number of connectible edges in G is
∑
i α(S[i]).

5. Illustration

As most of the above steps are either standard, such as finding a junction tree, or straightforward, such as checking
that edges appear in only 1 clique, we illustrate only the novel enumeration of connectible edges. As an example, consider
enumerating the connectible edges allowed in the graph in Fig. 1 by the separator {3}. The forest, F{3}, shown in Fig. 4 has 4
components. The vertices in the cliques in each component, excluding vertex 3 are {20}, {7, 17, 22}, {5} and {1, 2, 16, 18, 19}.
Any pair of vertices selected from any two of these sets are connectible making

α({3}) =
1
2
(1× 9+ 3× 7+ 1× 9+ 5× 5) = 32

connections allowed by separator {3}. Note that the result of connecting the vertices 16 and 18 that appear in cliques in
Fig. 4 is also a decomposable graph, however, this is allowed by the separator {2, 3}, not by {3}, so we do not count this
possibility at this stage.
The other distinct separators are dealt with in the same way and the final results are presented in Table 2 which

enumerates all the pairs of vertices in Fig. 1 whose connection makes a new decomposable graph. Table 1 shows an
enumeration of the edges in Fig. 1 that are disconnectible. Of the 23C2 = 253 possible pairs only 26 + 169 = 195 can
be changed to give a new decomposable graph.

6. Discussion

As noted above, a junction tree for a decomposable G can be found in time of order |V | + |E|. Letting n = |V |, this is at
worst O(n2), and for the sparser graphs likely to be encountered in model estimation is closer to linear in n. As we build the
junction tree, J , we can, at no extra cost, note for any distinct separator S[i] a clique inwhich it is contained. Thus, by searching
out from that clique we can find TS[i] in time proportional to the number of nodes in TS[i] . Since J can have at most n vertices,
finding all the TS[i] can be done in atmostO(n

2) time.While it is possible to construct examples where this bound is attained,
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Table 1
An enumeration of the disconnectible pairs for the graph in Fig. 1.

Clique C Edges only in C Count

{4} – 0
{6} – 0
{13, 14, 15} (13, 15) (14, 15) 2
{13, 14, 23} (13, 23) (14, 23) 2
{3, 5} (3, 5) 1
{1, 2, 3} (1, 2) (1, 3) 2
{2, 3, 18} (2, 18) 1
{2, 3, 16} (2, 16) (3, 16) 2
{3, 20} (3, 20) 1
{3, 18, 19} (3, 19) (18, 19) 2
{17, 21} (17, 21) 1
{8, 17} (8, 17) 1
{9, 10} (9, 10) 1
{11, 12} (11, 12) 1
{9, 12, 17} (9, 12) (9, 17) (12, 17) 3
{3, 7, 17, 22} (3, 7) (3, 17) (3, 2) (7, 17) (7, 22) (17, 22) 6

Total number of disconnectible pairs 26

Table 2
An enumeration of the connectible pairs for the graph in Fig. 1.

Distinct separator S mS Variables in cliques of components of FS Sizes α(S)

∅ 4 {4}{6}{13, 14, 15, 23 } 1, 1, 4, 17 111
{1, 2, 3, 5, 7, 8, 9, 10, 11,
12, 16, 17, 18, 19, 20, 21, 22}

{13, 14} 1 {15}{23} 1, 1 1
{3} 3 {20}{5}{7, 17, 22}{1, 2, 16, 18, 19} 1, 1, 3, 5 32
{2, 3} 2 {1}{16}{18 } 1, 1, 1 3
{3, 18} 1 {2}{19} 1, 1 1
{9} 1 {10}{12, 17} 1, 2 2
{12} 1 {11}{9, 17} 1, 2 2
{17} 3 {8}{21}{9, 12}{3, 7, 22} 1, 1, 2, 3 17

Total number of connectible pairs 169

for graphs encountered in model estimation actual performance is again likely to be far faster. Given TS[i] , with appropriate
indexing of vertices, JS[i] and α(S[i]) can be found in O(n) time. Hence, overall, enumerating the connectible vertex pairs by
our method allows an O(n2)worst case implementation.
The method previously described by Deshpande et al. (2001) also solves this problem in O(n2) time and is in many

ways similar. It too, in essence, relies on an understanding of the result of Giudici and Green (1999) when stated as: two
unconnected vertices of G are connectible if and only if they are contained in cliques that are adjacent in some junction tree J of
G. In order to exploit this they require two auxiliary data structures that are both of order O(n2) in size. One of these, the
clique graph, can be thought of as the union of all possible junction trees of G. It is here that our method has a significant
advantage as it requires only a single, arbitrary, junction tree representation J of G. As J is of O(n) size this represents a
considerable saving of space. Moreover, as Giudici and Green (1999) showed, if G is updated to a decomposable G′ by either
the connection or disconnection of a pair of vertices, the corresponding junction tree J ′ can be found from J in O(1) time. The
update will depend on the context, but involves changes to 4 cliques or separators where a change may be the addition or
deletion of the clique or separator. This compares very favorably with the O(n2)method for correspondingly updating the
clique graph given by Deshpande et al. (2001).
Furthermore, adjustments to the probability of G to obtain that of proposed G′ requires only the calculation of the clique

marginals of the same 4 cliques or separatorswhich is again quick and independent of the size of the graph.We also note that
this does not require construction of G′ so that both the proposal and acceptance/rejection steps of the Metropolis sampling
process can be carried out using only the junction tree representation.
If we accept a proposal G′, we could, at worst, then enumerate the allowable perturbations anew and select another

random update. However, the structure of the junction tree enables the new enumeration to be made as a modification of
the previous. Once more, counting the number of allowable disconnections is easy. We simply decrease the count by the
number allowed in any clique removed, and increase by the number in any clique created.
When a link of J , associated with separator S, is added or removed, this will affect not only TS but also TU for any other

separator U ⊂ S, so we need to track the partial ordering of the distinct separators defined by inclusion. The junction
property can again help here as it ensures that if U ⊂ S then TS is a connected subgraph of FU . Thus, the effect of changes to
TS on FU , and hence the number of connections allowed by U , can be evaluated by searching in J starting at the changed link
S and ending when, in each direction, a link associated with U is found.
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There remains some challenge in developing specific algorithms anddata structures to implement efficiently themethods
outlined above. However, it is clear that the junction tree has very strong properties that can be exploited to make this
possible.
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1 Introduction

Decomposable or triangulated or chordal graphs are of interest in many areas of mathe-
matics. Our primary interest is in their role as the conditional independence graphs of
decomposable graphical models. In particular, we are interested in estimating decompos-
able graphical models from observed data using Markov chain Monte Carlo, or MCMC,
schemes that traverse the space of decomposable graphs in order to sample from, or maxi-
mize, the posterior probability distribution defined by the data. The underlying approach
is the same whether the data is continuous (Giudici & Green 1999, Jones et al. 2005) or
discrete (Thomas & Camp 2004, Thomas 2005). A common feature of such schemes is
that, given an incumbent decomposable graph G, we propose a new graph G′ which is
then accepted or rejected according to probabilities that depend on the distribution being
sampled (Metropolis et al. 1953, Hastings 1970, Kirkpatrick et al. 1982). However, there
are no known proposal schemes that guarantee in advance that G′ will be decomposable,
even if G is. Hence, it is necessary to test G′ for decomposability before evaluating the
usual acceptance probability. While such tests can be very quick (Giudici & Green 1999),
for all practical methods for proposing a random G′ of which we are aware, the probability
that G′ is decomposable decreases rapidly with the size of the graph, making this approach
infeasible for large problems. For instance, in the genetic examples considered by Thomas
(2009), involving up to 20,000 variables, the probability of proposing a decomposable G′

decreases roughly as the inverse of the number of variables. Given these circumstances, it
would be very useful to have an alternative representation of the problem that avoids the
test for decomposability. It is with this in mind that we consider what follows.

It is often convenient in graphical modeling to operate not on the graph itself, but on
its derived representation as a junction tree. This raises the prospect of discarding the
underlying conditional independence graph entirely and defining MCMC schemes on the
space of junction trees. As each junction tree uniquely defines a decomposable graph, this
might avoid the expensive need to propose non-decomposable models. However, decom-
posable graphs have multiple equivalent junction tree representations and moreover the
number is variable from graph to graph. Therefore, sampling the space of junction trees
will over-sample decomposable graphs with a large number of such representations. This
can be corrected for if the number of junction trees for any particular decomposable graph
can be evaluated and this is the motivation for the method we present here.

We begin by reviewing some definitions and standard properties of decomposable graphs
and junction trees. For more complete information on these see Golumbic (1980) and
Lauritzen (1996), whose terminology we have adopted. We then consider the number of
ways that sets of links of a junction tree that correspond to the same clique intersection
can be rearranged. These counts are then combined to give the total number of junction
trees. A simple algorithm is then presented that will take a junction tree and select an
equivalent one uniformly at random from the set of all possible equivalents. Finally, we
discuss the computational complexity of our method showing that it is faster than existing
algorithms, and outline potential junction tree sampling methods.
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2 Definitions and preliminary results

Consider a graph G = G(V, E) with vertices V and edges E. A subset of vertices U ⊆ V

defines an induced subgraph of G which contains all the vertices U and any edges in E that
connect vertices in U . A subgraph induced by U ⊆ V is complete if all pairs of vertices in
U are connected in G. A clique is a complete subgraph that is maximal, that is, it is not
a subgraph of any other complete subgraph of G.

Definition 1 A graph G is decomposable if and only if the set of cliques of G can be

ordered as (C1, C2, . . . , Cc) so that for each i = 1, 2, . . . , c − 1

if Si = Ci ∩

c⋃

j=i+1

Cj then Si ⊂ Ck for some k > i. (1)

This is called the running intersection property and is equivalent to the requirement
that every cycle in G of length 4 or more is chorded. The sets S1, . . . Sc−1 are called the
separators of the graph. The set of cliques {C1, . . . Cc} and the collection of separators
{S1, . . . Sc−1} are uniquely determined from the structure of G; however, there may be
many orderings that have the running intersection property. The cliques of G are distinct
sets, but the separators are generally not all distinct.

Definition 2 The junction graph of a decomposable graph has nodes {C1, . . . , Cc} and

every pair of nodes is connected. Each link is associated with the intersection of the two

cliques that it connects, and has a weight, possibly zero, equal to the cardinality of the

intersection.

Note that for clarity we will reserve the terms vertices and edges for the elements of G,
and call those of the junction graph and its subgraphs nodes and links.

Definition 3 Let J be any spanning tree of the junction graph. J has the junction property
if for any two cliques C and D of G, every node on the unique path between C and D in J

contains C ∩ D. In this case J is said to be a junction tree.

Figure 1 gives an example of a decomposable graph while Figure 2 shows one of its
possible junction trees. The lexicographic search method of Tarjan & Yannakakis (1984)
will find a junction tree for a given decomposable graph in time and storage of order
|V | + |E|.

Note that some authors first partition a graph into its disjoint components before making
a junction tree for each component, combining the result into a junction forest. The above
definition, however, will allow us to state results more simply without having to make
special provision for nodes in separate components. In effect, we have taken a conventional
junction forest and connected it into a tree by adding links between the components. Each
of these new links will be associated with the empty set and have zero weight. Clearly, this
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Figure 1: A decomposable graph containing 23 vertices in 4 disjoint components.
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Figure 2: One possible junction tree for the graph shown in Figure 1. The 16 cliques
are the vertices of the junction tree and are shown as ovals. The 15 clique separators are
represented by the edges of the graph and each edge is associated with the intersection of
its incident vertices. These intersections are shown as rectangles. Note that some of these
intersections are empty.
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tree has the junction property. Results for junction forests can easily be recovered from
the results we present below for junction trees.

As Lauritzen (1996) describes more fully, a junction tree for G will exist if and only if
G is decomposable, and the collection of clique intersections associated with the c−1 links
of any junction tree of G is equal to the collection of separators of G. Also, the junction
property can be equivalently stated as the property that the subgraph of a junction tree
induced by the set of cliques that contain any set U ⊆ V is a single connected tree.

As stated in Definition 2, we can consider each link of the junction graph to have
a weight. Thus, any subgraph of it, and in particular any spanning tree, can also be
associated with a weight defined by the sum of the weights of the links included. Jensen
(1988) exploits this to give the following useful characterization of a junction tree.

Theorem 4 A spanning tree of the junction graph is a junction tree if and only if it has

maximal weight.

From this it is clear that any tree with the cliques of G as its nodes and for which
the collection of clique intersections associated with the links is equal to the collection of
separators of G, is a junction tree of G, since such a tree must span the junction graph and
have maximal weight. Therefore, the problem of enumerating junction trees for a given
graph G is equivalent to enumerating the ways that links of a given junction tree can be
rearranged so that the result is also a tree, and the collection of clique intersections defined
by the links of the tree is unchanged.

3 Rearranging the links for the set of separators with

the same intersection

As noted above, the separators of G are not generally distinct. For example, in Figure 2
three links are associated with the clique intersection {17} and two with the intersection
{2, 3}. We now consider the effect of rearranging all the links that are associated with the
same clique intersection. Let J be any junction tree of G and S one of its separators. Define
TS to be the subtree of J induced by the cliques that contain S. The junction property
ensures that TS is a single connected subtree of J .

Clearly, any rearrangement of the links associated with S in J must be a rearrangement
among certain links of TS, since both cliques joined by such a link must contain S. For
illustration, Figure 3 shows T{3}, the subtree defined by the separator {3} for the graph in
Figure 1. If we now rearrange the links that are associated with S to produce a new graph,
T ′

S say, and replace TS in J by T ′
S to give a new graph J ′, J ′ will be a junction tree of G if

and only if

• T ′
S is a tree, and hence so is J ′, and

• T ′
S has the same weight as TS, so that J ′ has the same weight as J .
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Figure 3: T{3}, the connected subtree of the junction graph shown in Figure 2 induced by
the cliques that contain the separator {3}.

In fact the second condition is redundant: all cliques in TS contain S so their intersection
must also do so, and any pair of cliques whose intersection is a superset of S cannot be
joined in a tree T ′

S unless already joined in TS as T ′
S would then have greater weight than

TS, and J ′ greater weight than J thus violating the latter’s maximal weight property. So
we need only count the number of ways of rearranging the links of TS associated with S

such that T ′
S is a tree.

Consider FS to be the forest obtained by deleting all the links associated with S from TS.
For example, Figure 4 shows F{3}, the forest obtained by deleting links associated with the
separator {3} from the tree T{3} shown in Figure 3. Define ν(S) to be the number of ways
that the components of FS can be connected into a single tree by adding the appropriate
number of links. This value is given by a theorem by Moon (1970) which can be restated
as follows.

Theorem 5 The number of distinct ways that a forest of p nodes comprising q subtrees of

sizes r1 . . . rq can be connected into a single tree by adding q − 1 links is

pq−2
q∏

i=1

ri. (2)

If the number of links associated with a given separator S is mS we know that FS will
contain mS +1 components. Let these be of sizes f1, f2, . . . fmS+1. Let the number of nodes
in TS be tS which is simply the number of cliques of G that contain S. Then, directly from
theorem 5 we obtain the following.
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Theorem 6

ν(S) = tmS−1
S

mS+1∏

j=1

fj . (3)

Figure 4: F{3}, the forest obtained by from the tree shown in Figure 3 by deleting edges
associated with the separator {3}.

For example, the forest in Figure 4 has 7 nodes in 4 components of sizes 1, 1, 1 and 4.
This forest, F{3}, can be reconnected into a single tree by adding 3 links in 72×1×1×1×4 =
196 different ways.

4 The number of junction trees for a decomposable

graph

The final step in enumerating junction trees is to note that ν(S) depends only on the sizes
of the components of FS, not on their particular structure. These sizes are determined by
the sets of cliques that contain separators that are supersets of S. Since the set of cliques
and collection of separators are uniquely determined and independent of any particular
junction tree, ν(S) is independent of J . Hence, the links associated with one particular
separator can be reallocated independently of the links associated with another. Thus we
obtain the following result.
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Table 1: The computations that enumerate the distinct junction trees for the decomposable
graph given in Figure 1.

Separator S mS tS {fS} ν(S)
∅ 3 16 1, 1, 2, 12 6144

{13, 14} 1 2 1, 1 1
{3} 3 7 1, 1, 1, 4 196
{2, 3} 2 3 1, 1, 1 3
{3, 18} 1 2 1, 1 1
{9} 1 2 1, 1 1
{12} 1 2 1, 1 1
{17} 3 4 1, 1, 1, 1 16

µ(G) = 6144 × 1 × 196 × 3 × 1 × 1 × 1 × 16 = 57802752

Theorem 7 Consider a decomposable graph G with separators S1, . . . Sc−1. Let S[1], . . . S[s]

be the distinct sets contained in the collection of separators. The number of junction trees

of G is

µ(G) =
s∏

i=1

ν(S[i]). (4)

As an example, the number of distinct junction trees for the graph shown in Figure 1
is 57,802,752. The calculations needed to obtain this are given in Table 1.

As noted above, we can retrieve from this result the count of the number of possible
conventional junction forests that a decomposable graph has. This is given simply by

µ(G)

ν(∅)
,

which for the example is 57802752/6144 = 9408.

5 Randomizing the junction tree

Theorem 5 is similar in style to Prüfer’s constructive proof (Prüfer 1918) of Cayley’s result
that there are nn−2 distinct labeled trees of n vertices (Cayley 1889). A similar construction
lets us choose uniformly at random from the set of possible trees containing a given forest
as follows:

1. Label each vertex of the forest {i, j} where 1 ≤ i ≤ q and 1 ≤ j ≤ ri, so that the
first index indicates the subtree the vertex belongs to and the second reflects some
ordering within the subtree. The orderings of the subtrees and of vertices within
subtrees are arbitrary.
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2. Construct a list v containing q − 2 vertices each chosen at random with replacement
from the set of all p vertices.

3. Construct a set w containing q vertices, one chosen at random from each subtree.

4. Find in w the vertex x with the largest first index that does not appear as a first
index of any vertex in v. Since the length of v is 2 less than the size of w there must
always be at least 2 such vertices.

5. Connect x to y, the vertex at the head of the list v.

6. Remove x from the set w, and delete y from the head of the list v.

7. Repeat from 4 until v is empty. At this point w contains 2 vertices. Connect them.

Given any particular junction tree representation J for a decomposable graph G we can
choose uniformly at random from the set of equivalent junction trees by applying the above
algorithm to each of the forests FS defined by the distinct separators of J .

6 Computational complexity

Jensen’s characterization of a junction tree as a maximal spanning tree of the junction
graph means that general methods for enumerating the optimal spanning trees of a graph
can also be applied to enumerating junction trees. The method of Broder & Mayr (1997)
does precisely this. Recalling the notation used in section 2, the junction graph will have c

nodes and c(c− 1)/2 links. Broder and Mayr’s method would require O(M(c)) elementary
operations to enumerate its maximal spanning trees, where M(c) is the number of oper-
ations needed to multiply c × c matrices. Asymptotically, the best algorithm for matrix
multiplication is that of Coppersmith & Winograd (1990) which requires O(c2.376) opera-
tions, although for realistically sized matrices the best practical methods, based on that of
Strassen (1969), need O(c2.807) operations. Letting n = |V |, the number of vertices in G,
we note that c can be as large as n and typically grows linearly with n. Hence, Broder and
Mayr’s algorithm is at best an O(n2.376) method.

However, as noted above, Jensen’s characterization is not the only route to obtaining a
junction tree. The lexicographic search of Tarjan & Yannakakis (1984) will find a simple
elimination scheme, and hence a junction tree, in time O(n + m), where m = |E| the
number of edges in G. While m = O(n2) in the worst case, typical graphical models are
sparse and the time required is closer to linear in n. The enumeration method presented
here depends only on knowing a single junction tree for G. The time required to carry it
out is dominated by the time needed to find each TS[i]

. We note that any link L of J will
be a link in TS[i]

for each i such that S[i] ⊆ L. Finding all the TS[i]
can be done by iterating

over the c − 1 links of J , and for each link checking for inclusion of each of the s distinct
separators. Since both c and s can be O(n), the enumeration is an O(n2) algorithm in the
worst case. Other ways of finding the TS[i]

will in practice be faster. For example, we can
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find TS[i]
by starting with a node that contains S[i] and searching outwards in J until we hit

nodes that don’t contain the separator. Thus, if TS[i]
is small it will be found very quickly.

While it is straightforward to construct examples where this approach is also O(n2), for
more typical graphs it will be considerably faster.

In summary, applying Broder and Mayr’s general method to the special case of enu-
merating junction trees is at best an O(n2.376) method, and more realistically O(n2.807). By
exploiting the junction property, our method improves this to a worst case of O(n2) which
in practice is a very conservative upper bound.

7 MCMC samplers for junction trees

Given a distribution π(G) from which we want to sample decomposable graphs G, the
methods of Metropolis et al. (1953) and Hastings (1970) allow us to construct Markov
chains with π(G) as the ergodic distribution. For example, we can propose a new graph G′

by choosing two random vertices of G: if they are connected in G we disconnect them in G′

and vice versa. G′ is then accepted with probability max(1, π(G′)/π(G)), with the special
case that π(G′) is defined to be 0 if G′ is not a decomposable graph. Intuitively, it is easy
to see that this can be very inefficient. If we consider choosing two random vertices of G,
it is quite likely that we pick two vertices that are not connected directly, but which are
connected by several paths through other vertices. Adding an edge between the vertices
is, therefore, likely to create cycles. Unless all the connecting paths are short, a cycle of
length 4 or more may well be formed which prevents G′ being decomposable. Thomas
(2009) shows that for modeling linkage disequilibrium between genetic loci, the acceptance
rate decreases approximately as 1/n, making the method infeasible for large numbers of
variables. As genetic methods now routinely assay hundreds of thousands of loci on a single
chromosome, the high rejection rate becomes increasingly problematic.

The motivation for our enumeration method is that it makes it possible to devise MCMC
schemes over decomposable graphs that are expressed as operations on junction trees. If
we wish to sample decomposable graphs from π(G), it is sufficient to sample junction trees
from

ρ(J) =
π(G(J))

µ(G(J))

since

P (G) =
∑

J :G(J)=G

π(G(J))

µ(G(J))

=
π(G)

µ(G)

∑

J :G(J)=G

1

= π(G).

For each J sampled from a Markov chain with ergodic distribution ρ(J), we would derive
the graph G(J) which would be sampled with probability π(G), as required. This, of

11



course, requires efficient enumeration, but note that the Metropolis-Hastings acceptance
probability for a junction tree MCMC scheme depends only on µ(G(J ′))/µ(G(J)) which,
given the factorization in equation 4 above, might be computable from µ(G(J)) more simply
than direct enumeration of µ(G(J ′)).

Simulating general labeled trees is a relatively straightforward matter. For instance,
Prüfer’s construction (Prüfer 1918) makes independent realizations of trees of a given size
from a uniform distribution easy. However, for the junction tree problem the labels on the
nodes of J are the cliques of G, and these must be connected so that the junction property
holds, making for a more difficult problem in a constrained space. Nonetheless, we have
been able to construct an irreducible MCMC sampling scheme over the space of junction
trees for graphs of a given size n. This involves operations on the nodes and links of an
incumbent junction tree J that correspond to either adding edges to or deleting edges from
G when the edges are chosen from highly restricted sets of possibilities. Following these
perturbation rules ensures that any proposal J ′ is a junction tree for some decomposable
graph G′ on n vertices. Hence, we avoid both the need to test for decomposability and the
inefficiency of proposing non-decomposable graphs. The randomization method described
in section 5 above can also be included in the scheme; although, it is not necessary for
irreducibility, it may improve the mixing properties of the chain. While the space of
junction trees is larger than that of decomposable graphs, it is more tractable and may be
more easily traversible. A complete description of the method and implementation is the
subject of a future manuscript currently under preparation.
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9 Supplemental material

The following materials are available to accompany this paper.

jtree.jar: This file contains the source code and compiled classes required to run the
programs described below. The code can be run by adding jtree.jar to the list of
files accessed by the user’s classpath, or by using the -classpath option of the java

command. (Jar, java archive, file.)
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docs: This is a directory of HTML pages automatically produced for the code in
jtree.jar using the javadoc program, and can be viewed using a web browser.
(Directory of HTML files.)

illustration: This is simple text file specifying the graph used in this paper to illustrate
junction tree enumeration. (Text file.)

The programs included in jtree.jar are:

CountJTrees: This reads a graph as a simple text file from the standard input stream
and outputs the number of equivalent junction trees it has. If the input graph is
not decomposable, zero is output. For example, to replicate the enumeration shown
in Table 1, first ensure that files jtenum.jar and illustration are in the current
working directory and then run the command:

java -classpath jtenum.jar CountJTrees < illustration

The following programs can be run in a similar way.

CountLogJTrees: This reads a graph as a simple text file and outputs the log of the
number of equivalent junction trees it has. If the input graph is not decomposable,
negative infinity is output.

FindRandomJTree: This reads a graph and outputs a junction tree selected uniformly
at random from all possible junction tree representations. If the input graph is not
decomposable, there is no output.

RandomJTreeDemo: This reads a graph and draws a junction tree representation to the
screen. Every 2 seconds the junction tree is replaced by randomly chosen equivalent
junction tree. If the input graph is not decomposable, the program exits with an
error message.
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Abstract

The method of shared genomic segment analysis1 has shown that long tracts of loci that

share a common allele identical by state can be used to localize hypothesized predisposition

genes by indicating underlying regions shared identical by descent among individuals with

a common trait. In this study, we found that there are long tracts of loci on chromosomes

5 and 18 at which both familial cancer cases from Utah pedigrees and European control

individuals from HapMap share a common allele. These two, and only these two, regions

stand out from the background levels of sharing in a genome wide analysis. They are not

shared in African and Asian controls. These anomalous regions of heterozygous sharing are

peculiar to Europeans, and perhaps to the Utah population, and emphasize the need for

appropriate modeling in any simulation methods used to evaluate statistical significance.

Keywords: Identity by descent, extended pedigrees, association study, pedigree analysis,

single nucleotide polymorphism (SNP).

Running title: Anomalous genomic sharing

1. INTRODUCTION

Identifying genes that have underlying susceptibilities to human genetic diseases

represents a major challenge in biomedical research. While family based methods have

1Affiliation: Department of Biomedical Informatics, University of Utah.

2Corresponding author. Contact Information: Genetic Epidemiology, 391 Chipeta Way

Suite D, Salt Lake City, UT 84108, USA. z.cai@utah.edu, +1 801 587 9303 (voice), +1 801

581 6052 (fax).
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proved successful in the past using linkage analysis, this method is not tractable in the face

of large sets of single nucleotide polymorphisms, or SNPs, that can currently be assayed.

However, this type of data has been used in familial studies through methods of mapping

by identifying regions of identity by descent, or IBD. Mapping homozygous IBD regions

was introduced by Miyazawa et al2 and can be applied to searching for recessive diseases

in inbred populations. Thomas et al1 developed this idea in extended pedigrees, searching

for regions shared in a heterozygous state by relatives. This uses tracts of loci in which

sets of individuals share a common allele to indicate underlying IBD. Leibon et al3 and

Kong et al4 developed the same idea. We call this approach genetic mapping by shared

genomic segments. While not as powerful as full linkage analysis, this method provides a

robust and tractable alternative. By obtaining the largest number of individuals who share

an allele at each marker, we search for an excessively long tract of unphased haplotype.

Such a haplotype that is shared by all individuals is then taken as evidence that there

is an underlying genomic segment inherited IBD from a common ancestor. This IBD

region consequently becomes a candidate for containing a gene with a mutation causing

susceptibility to the disease. Tracts of sharing among large subsets of individuals can also

be considered. The statistical significance of long shared genomic segments can be evaluated

by gene drop simulation. While the same idea was independently published by Leibon et

al3, they evaluated significance by extending methods derived by Miyazawa et al2.

Both the gene drop approach of Thomas et al1 and the distributions derived by Leibon

et al3 assume that the genetic loci are in linkage equilibrium. This simplifying assumption

is clearly inappropriate for dense SNP maps, as the above authors pointed out. Linkage

disequilibrium will likely increase the lengths of random shared genomic segments under

the null distribution of no genetic cause for the disease.

The focus of this paper will be to describe the two long shared genomic segments,
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seen on chromosome 5 and 18. These two segments appear to be statistical anomalies in

that they are well outside the range of variation seen elsewhere in a genome wide scan.

They were originally detected in a set of individuals with prostate cancer from extended

Utah pedigrees. This gave us the initial impression that genes for prostate cancer might

be located in these regions. However, precicely the same shared segments were seen in an

analysis of a set of melanoma cases. Moreover, these shared genomic regions were also

seen in a set of 60 unrelated northwestern European descendent controls genotyped by

the Hapmap project5. Clearly, that such anomalies can occur in unselected controls could

potentially lead to spurious conclusions, and this paper seeks to describe and explain them.

This emphasizes the potential pitfalls of naive modeling of haplotype frequencies in any

analysis.

In what follows we will briefly review the method of genetic mapping by shared genomic

segments describe the data analyzed and present the results of the analyses. Finally, we

will discuss the possible causes of the anomalies. Programs for the analyses are available

from Alun Thomas’s web site (http://bioinformatics.med.uath.edu/∼alun).

2. SUBJECTS AND METHODS

2.1. Case and control sets

Using the Illumina 550K assay of over half a million SNP loci, we genotyped two

sets of familial disease clusters, one of prostate cancer and one of melanoma, identified

using the Utah Population Database (UPDB), a computerized genealogy database that has

been record linked to cancer registry data. The prostate cancer set consisted of two large

extended families. The first of eight distantly related cases connected by 27 meioses to a

married pair of ancestors, the second of 21 distantly related cases connected by 68 meioses
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to a common ancestor pair. The melanoma set had more cases, 90, but distributed in 21

smaller pedigrees. Shared genomic segment analyses were performed on the individual

pedigrees, as well as the combined disease sets. The data for the combined disease sets are

the most relevant and presented below.

As controls for these disease cases, we took genotypes of 60 parents from the 30 parent-

offspring trios of northern and western European origin genotyped by the HapMap project

(Version r23a.b36 reversed-strand non-redundant data). These samples, conventionally

denoted as CEU, were originally collected by the Centre d’Etude du Polimorphisme Humain

in Utah in 1980, thus they should be well matched with cancer cases from the UPDB. We

found that 95% of the autosomal markers genotyped in our assays were also genotyped

in these individuals. The results presented below are from this intersection of 531, 924

markers.

In following up our findings we also used the CEU controls to measure the heterozygosity

at each marker using the usual statistic of 1− p̂2
i,1− p̂2

i,2 where p̂i,1 and p̂i,2 are the maximum

likelihood estimates of the frequencies of alleles 1 and 2 at the ith locus. We also computed

Chi-squared test statistics for Hardy-Weinberg equilibrium6–8 at each marker. Linkage

disequilibrium in the anomalous regions was also evaluated from the CEU data using the

Haploview software9 with the following criteria: ignore pairwise comparisons of markers

more than 500Kb apart, take Hardy-Weinberg p-value cutoff of 0.001, and minimum minor

allele frequency of 0.001.

Finally, in order to assess whether the results seen were specific to Europeans, we

performed shared segment analyses on the HapMap data, using the genotypes of 60 parents

out of 30 YRI trios, which are Yoruba people from Ibadan, Nigeria. We also tested

the genotypes of 45 unrelated Han Chinese individuals from Beijing (CHB), and the 45

unrelated Japanese individuals from Tokyo (JPT); as well as combing the two as an Asian
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data set.

2.2. Shared genomic segments

Consider a genotyping assay of s SNPs carried out on n individuals. Define n1,1 n1,2

and n2,2 as the counts of the genotypes at the ith locus. Note that n1,1 + n1,2 + n2,2 ≤ n,

with inequality when there are missing genotypes. Define Si = n−min(n1,1, n2,2), which

is the largest number of individuals who could possibly share an allele provided there is

no genotyping error. Any missing individuals are effectively treated as heterozygotes. We

then compute the lengths of consecutive loci at which Si ≥ t for some chosen values of the

threshold t. Defining another variable Ri(t), as the length of the longest tract containing

the ith locus for which Si ≥ t. Leibon et al3 called this the SNP streak statistic.

3. RESULTS

Figure 1 gives the plots for the tract lengths where (a) all 29 prostate cancer cases, (b)

all 90 melanoma cases, and (c) all 119 combined cases, shared a common allele. For each

of the diseases, the longest tracts were at 5q22.1 and 18q22.1. Also, as is demonstrated in

the combined plot, these regions corresponded exactly across the two case sets. The shared

segment on chromosome 5 spans 70 SNP markers from base pair positions 109,641,683 to

110,171,067, at a length of 529 Kb. That on chromosome 18, the shared segment spans 55

SNP markers and is 107 Kb in length from base pair positions of 64, 802, 946 to 64, 909, 997.

Figure 2 shows the tracts where (a) all of the 60 CEU individuals, (b) 59 out of the 60

CEU individuals, and (c) all 60 YRI individuals, share an allele. The first figure showed

that there was again sharing of the segment on chromosome 18, but the sharing was not

seen in all 60 individuals at chromosome 5. However, there were two longer than average
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tracts of sharing adjacent to each other at 5q22.1, and, as the second figure shows, if we

relax the criterion to require all but one of the individuals to share, then the region on

chromosome 5 again stands out. The non-sharing individual had a miss match at only one

locus, which may be a true miss match or possibly a genotyping error.

Figure 3 shows the tracts where (a) all 45 CHB individuals, (b) all 45 JPT individuals,

(c) all 90 combined CHB and JPT individuals from HapMap, share an allele.

Figure 4 gives the empirical distribution of heterozygosity scores across all of

chromosomes 5 and 18, compared with the distribution of scores seen in the anomalous

regions. Figure 5 similarly demonstrates the empirical distribution of Hardy-Weinberg test

statistics over the whole chromosomes, as well as at the two anomalous regions. Finally,

figure 6 and 7 shows plots of the strength of pairwise linkage disequilibrium scores between

the genotyped markers, in and around the regions on chromosome 5 and 18.

4. DISCUSSION

The existence of two such extreme outliers in the otherwise rather even distribution of

shared genomic segments in European case and control data is quite striking. Note also that

the sharing in these regions is heterozygous, that is, that only one chromosome consistently

appears to be shared. There are heterozygous genotypes observed at loci over both regions

in several individuals. The anomalies are not seen in the YRI, JPT and CHB controls.

There is a noticeable region of sharing on chromosome 5 among the Asian controls, see

figure 3, but this does not overlap at all with that seen in the Europeans. There are no

outstanding regions of sharing in the Africans (figure 2), indeed the tracts of sharing in this

sample are considerably shorter than those seen in the others as would be expected given

the greater variation and lower linkage disequilibrium seen in Africa10. While the CEU
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controls are appropriate for our Utah genetic studies, we are unable to determine whether

the anomalies are specific to the northern European background of the Utah founders, or

extend more broadly in Europe. Note, however, that the large number of Utah founders

and the average levels of inbreeding seen in the Utah population, meaning that the outliers

are unlikely to be due to founder effects or genetic bottle necks. Note also that they are not

due to high levels of missing data. The missing data rate across the whole CEU data was

1%, and only 0.7% and 0.4% in the chromosome 5 and 18 regions respectively. Furthermore,

the allele frequencies, as shown in figure 5 appear to be in Hardy-Weinberg equilibrium.

Our results do, however, suggest some possible explanations. The region at 18q22.1 is,

perhaps, the easier to explain. It is a shorter segment and matches almost exactly a linkage

disequilibrium block, or recombination cold spot, as shown in figure 7. Moreover, this region

generally has low levels of heterozygosity, as seen in figure 4. As the minor allele will be

rare at loci in the region, and observations at successive loci will be strongly correlated, we

may simply have missed seeing rare homozygotes due to random sampling of SNPs. Since

a tract of allele sharing is usually ended by the appearance of the rarer homozygote, the

apparent shared segment may be due to the combination of these two features.

The 5q22.1 region, on the other hand, is longer, and has higher heterozygosity. Also,

it does not have a particularly strong linkage disequilibrium structure. However, there is a

copy number variant, reported by Redon et al11, between 109, 669, 760 and 110, 180, 038bp,

closesly matching the anomalous shared segment. Even though its association with any gene

function is currently unknown, it is asserted to be a copy number variant with one-copy

loss. If the anomaly were due to a common deletion among Europeans, we would expect to

see deviations from Hardy-Weinberg equilibrium due to an apparent excess of homozygotes,

however, as noted above we do not see this. A supernumerary copy number variant, on the

other hand, could lead to excess apparent heterozygotes which might result in excessive



– 9 –

apparent allele sharing.

An alternative explanation for the chromosome 5q22.1 phenomenon would be positive

selection. There are large negative values of Tajima’s D statistic12 throughout most of this

region, as calculated using the UCSC genome browser13–15. This indicates an excess of rare

variation in the CEU population, which is consistent with positive selection. This region

is supported by data obtained from Haplotter10. There are both strongly negative iHS

score (|iHS| > 2.5) and strongly negative values of Fay and Wu’s H score within the region

(|H| > 2.0) for CEU samples, suggesting that this is a highly selected site16. Moreover,

the 5q22.1 region contains a putative uncharacterized protein FLJ43080 17, and a gene

SLC25A46 18;19. SLC25A46 is a member of the mitochondrial solute carrier family that is

widely expressed in the central nervous system. High expression has been detected in the

hindbrain, coronal section IV, spinal cord, and section VII19. Studies10;20;21 have suggested

that such genes involved in brain development and function are likely targets for natural

selection in recent human evolution. The location of SLC25A46 and the statistical survey

suggest that this anomaly is due to recent positive selection.

Whatever the causes of these anomalies, they demonstrate the need for complex

modeling of haplotype frequencies in genetic studies. Even methods that account for linkage

disequilibrium may not properly capture the full range of allelic association that may make

itself apparent.
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6. Figures and Tables
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Fig. 1.— Familial disease clusters
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Fig. 2.— HapMap CEU and YRI data
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Fig. 3.— HapMap CHB and JPT data
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Fig. 4.— Heterozygosity analysis
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Fig. 5.— Hardy-Weinberg analysis
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Fig. 6.— Linkage disequilibrium in the chromosome 5 region
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Fig. 7.— Linkage disequilibrium in the chromosome 18 region




